【題目】以下問題,不適合普查的是( )
A.學(xué)校招聘教師,對應(yīng)聘人員的面試
B.進(jìn)入地鐵站對旅客攜帶的包進(jìn)行的安檢
C.調(diào)查本班同學(xué)的身高
D.調(diào)查我國民眾對“香港近期暴力”行為的看法
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①畫一條長為6cm的直線;
②若AC=BC,則C為線段AB的中點(diǎn);
③線段AB是點(diǎn)A到點(diǎn)B的距離;
④OC,OD為∠AOB的三等分線,則∠AOC=∠DOC.
其中正確的個數(shù)是( 。
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點(diǎn),四邊形ABDE是平行四邊形,AC、DE相交于點(diǎn)O.
(1)求證:四邊形ADCE是矩形.
(2)若∠AOE=60°,AE=4,求矩形ADCE對角線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A市和B市分別有庫存的某聯(lián)合收割機(jī)12臺和6臺,現(xiàn)決定開往C市10臺和D市8臺,已知從A市開往C市、D市的油料費(fèi)分別為每臺400元和800元,從B市開往C市和D市的油料費(fèi)分別為每臺300元和500元.
(1)設(shè)B市運(yùn)往C市的聯(lián)合收割機(jī)為x臺,求運(yùn)費(fèi)w關(guān)于x的函數(shù)關(guān)系式.
(2)若總運(yùn)費(fèi)不超過9000元,問有幾種調(diào)運(yùn)方案?
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,并求出最低運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店某件服裝標(biāo)價為200元,現(xiàn)“雙十二”打折促銷以8折出售,則這件服裝現(xiàn)售___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,點(diǎn)為邊的中點(diǎn).
(1)如圖1,點(diǎn)為線段上的一點(diǎn),且,延長,分別與邊,交于點(diǎn),.
①求證:;
②求證:.
(2)如圖2,在邊上取一點(diǎn),滿足,連接交于點(diǎn),連接延長交于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對收費(fèi)作如下調(diào)整:一天中,同一個人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計車費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時,就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計:收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利? 說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BF為⊙O的直徑,直線AC交⊙O于A,B兩點(diǎn),點(diǎn)D在⊙O上,BD平分∠OBC,DE⊥AC于點(diǎn)E.
(1)求證:直線DE是⊙O的切線;
(2)若 BF=10,sin∠BDE=,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com