(2013•來(lái)賓)如圖是一圓形水管的截面圖,已知⊙O的半徑OA=13,水面寬AB=24,則水的深度CD是
8
8
分析:先根據(jù)垂徑定理求出AC的長(zhǎng),再根據(jù)勾股定理求出OC的長(zhǎng),根據(jù)CD=OD-OC即可得出結(jié)論.
解答:解:∵⊙O的半徑OA=13,水面寬AB=24,OD⊥AB,
∴OD=OA=13,AC=
1
2
AB=12,
在Rt△AOC中,OC=
OA2-AC2
=
132-122
=5,
∴CD=OD-OC=13-5=8.
故答案為:8.
點(diǎn)評(píng):本題考查的是垂徑定理的應(yīng)用,解答此類問(wèn)題時(shí)往往是找出直角三角形,利用勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•來(lái)賓)如圖是由六個(gè)大小相同的小正方體組成的幾何體,它的主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•來(lái)賓)如圖,直線AB∥CD,∠CGF=130°,則∠BFE的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•來(lái)賓)如圖,AB=AC,D,E分別是AB,AC上的點(diǎn),下列條件中不能證明△ABE≌△ACD的是
( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•來(lái)賓)如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,4),B(-3,5),C(-4,1).
(1)把△ABC向右平移2個(gè)單位得△A1B1C1,請(qǐng)畫出△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)把△ABC繞原點(diǎn)O旋轉(zhuǎn)180°得到△A2B2C2,請(qǐng)畫出△A2B2C2

查看答案和解析>>

同步練習(xí)冊(cè)答案