【題目】如圖,OA在x軸上,OB在y軸上,OA=8,AB=10,點(diǎn)C在邊OA上,AC=2,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)()的圖象經(jīng)過圓心P,則k= .
【答案】﹣5.
【解析】
試題分析:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如圖,設(shè)⊙P的半徑為r,∵⊙P與邊AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC為等腰直角三角形,∴△PCD為等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴,即,解得CH=,∴AH===,∴BH==,∵PE∥CH,∴△BEP∽△BHC,∴,即,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P(5,﹣1),∴k=5×(﹣1)=﹣5.故答案為:﹣5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°
(1)求證:①AC=BD;②∠APB=50°;
(2)如圖②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,則AC與BD間的等量關(guān)系為 , ∠APB的大小為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了“探尋神奇的幻方”后,小明也找了九個數(shù)字做成一個三階幻方,如圖所示是這個幻方的一部分,則a=_____,b=_____。
a | 13 | b |
10 | 7 | |
12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道有兩條邊相等的三角形叫做等腰三角形.類似的,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
(1)請寫出一個你學(xué)過的四邊形中是等對邊四邊形的圖形的名稱.
(2)如圖1,在△ABC中,點(diǎn)D、E分別在AB、AC上,且CD、BE相交于點(diǎn)O,若∠A=60°,∠DCB=∠EBC= ∠A.請你寫出與∠A相等的角.
(3)我們易證圖中的四邊形BCED是等對邊四邊形.
(提示:如圖2,可證△BGO≌△CFO再證△BGD≌△CFE,可得到結(jié)論BD=CE.不需證明)
若在△ABC中,如果∠A是不等于60°的銳角,D、E分別在AB、AC上,且CD、BE相交于點(diǎn)O,∠DCB=∠EBC= ∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D在AB邊上,連接CD,將△BCD沿CD翻折得到△ECD,點(diǎn)B的對稱點(diǎn)E恰好落在AC邊上,若∠B=55°,則∠ADE的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算。
(1)一個數(shù)加上﹣13得﹣5,那么這個數(shù)為 .
(2)計(jì)算:36÷4×(﹣ )= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鞋廠調(diào)查了商場一個月內(nèi)不同尺碼男鞋的銷量,在下列統(tǒng)計(jì)量中,該鞋廠最關(guān)注的是( )
A.方差B.眾數(shù)C.中位數(shù)D.平均數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com