【題目】小敏思考解決如下問題:
原題:如圖1,點,分別在菱形的邊,上,,求證:.
(1)小敏進行探索,若將點,的位置特殊化:把繞點旋轉得到,使,點,分別在邊,上,如圖2,此時她證明了.請你證明.
(2)受以上(1)的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為,.請你繼續(xù)完成原題的證明.
(3)如果在原題中添加條件:,,如圖1.請你編制一個計算題(不標注新的字母),并直接給出答案(根據編出的問題層次,給不同的得分).
【答案】(1)證明見解析;(2)證明見解析;(3)見解析
【解析】(1)證明,即可求證.
(2)如圖2,,即可求證.
(3)不唯一.
【解答】(1)如圖1,
在菱形中,
,,,
∵,
∴,
∴,
∵,
∴,
∴,,
∴,
∴.
(2)如圖2,由(1),∵,
∴ ,
∵,,
∴,
∵,
∴,
∴.
(3)不唯一,舉例如下:
層次1:①求的度數.答案:.
②分別求,的度數.答案:.
③求菱形的周長.答案:16.
④分別求,,的長.答案:4,4,4.
層次2:①求的值.答案:4.
②求的值.答案:4.
③求的值.答案:.
層次3:①求四邊形的面積.答案:.
②求與的面積和.答案:.
③求四邊形周長的最小值.答案:.
④求中點運動的路徑長.答案:.
科目:初中數學 來源: 題型:
【題目】讓我們輕松一下,做一個數字游戲。第一步:取一個自然數n1=5,計算n12+1得a1;第二步:算出a1的各位數字之和得n2,計算n22+1得a2;第三步,算出a2的各位數字之和得n3,計算n32+1得a3;…………以此類推,則a2019=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,∠1=∠2,∠3=∠4,則AD∥BE.完成下列推理過程:
證明:∵AB∥CD(已知)
∴∠4= ( )
∵∠3=∠4(已知)
∴∠3= ( )
∵∠1=∠2(已知)
∴∠CAE+∠1=∠CAE+∠2
即∠ =∠
∴∠3=
∴AD∥BE( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+4與x軸相交于點A,與y軸相交于點B.
(1)求△AOB的面積;
(2)過B點作直線BC與x軸相交于點C,若△ABC的面積是16,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,將矩形ABCD紙對折,設折痕為MN,再把B點疊在折痕線MN上,(如圖點B’),若,則折痕AE的長為( )
A. B. C. 2 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD∥BC,∠1=∠B,∠2=∠3.
(1)試說明AB∥DE;
(2)AF與DC的位置關系如何;為什么;
(3)若∠B=68°,∠C=46°20′,求∠2的度數.
注:本題第(1)、(2)小題在下面的解答過程的空格內填寫理由或數學式;第(3)小題要寫出解題過程.
解:
(1)∵AD∥BC,(已知)
∴∠1=∠ . ( )
又∵∠1=∠B,(已知)
∴∠B=∠ ,(等量代換)
∴ ∥ . ( )
(2)AF與DC的位置關系是: .理由如下:
∵AB∥DE,(已知)
∴∠2=∠ . ( )
又∵∠2=∠3,(已知)
∴∠ =∠ .(等量代換)
∴ ∥ . ( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊三角形的邊長為4,點是△的中心,.繞點旋轉,分別交線段于兩點,連接,給出下列四個結論:①;②;③四邊形的面積始終等于;④△周長的最小值為6,上述結論中正確的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com