(2009•莆田)出售某種文具盒,若每個獲利x元,一天可售出(6-x)個,則當x=    元時,一天出售該種文具盒的總利潤y最大.
【答案】分析:先根據(jù)題意列出二次函數(shù)關(guān)系式,再根據(jù)求二次函數(shù)最值的方法求解即可.
解答:解:由題意可得函數(shù)式y(tǒng)=(6-x)x,
即y=-x2+6x,
當x=-=-=3時,y有最大值,
即當x=3元時,一天出售該種文具盒的總利潤y最大.
點評:本題考查的是二次函數(shù)在實際生活中的應用,比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•莆田)已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省莆田市中考數(shù)學試卷(解析版) 題型:解答題

(2009•莆田)已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省莆田市中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•莆田二模)已知:直角梯形ABCO以O為原點,OC所在直線為x軸,OA所在直線為y軸,建立坐標系,其中AB=10,OA=40,∠OCB=45°.
(1)求過O、B、C三點的拋物線解析式;
(2)在拋物線BC段上存在一點D,使得△ACD面積最大?若存在,請求出D點坐標,并求最大面積;
(3)動點F從A向B運動速度為1,E從C到O點運動速度為3,幾秒后使得EF平分梯形ABCO的面積,并求出直線EF的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省莆田市中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•莆田二模)如圖,在直角坐標系中,△ABC的三點坐標為A(2,0)、B(1,2)、C(3,1).
(1)請在圖中畫出△ABC的一個以原點為位似中心,且相似比為2的放大后的位似圖形△A1B1C1;(要求與△ABC同在原點的同側(cè))
(2)求直線AC1的直線解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省莆田市仙游縣中考數(shù)學聯(lián)考模擬試卷(解析版) 題型:解答題

(2009•莆田二模)已知:直角梯形ABCO以O為原點,OC所在直線為x軸,OA所在直線為y軸,建立坐標系,其中AB=10,OA=40,∠OCB=45°.
(1)求過O、B、C三點的拋物線解析式;
(2)在拋物線BC段上存在一點D,使得△ACD面積最大?若存在,請求出D點坐標,并求最大面積;
(3)動點F從A向B運動速度為1,E從C到O點運動速度為3,幾秒后使得EF平分梯形ABCO的面積,并求出直線EF的解析式.

查看答案和解析>>

同步練習冊答案