(2013•常熟市模擬)若方程x2-2x-2499=0的兩根為x1、x2,且x1>x2,則x1-x2的值為
100
100
分析:先配方得到(x-1)2-502=0,然后把方程左邊分解后轉(zhuǎn)化為x-1+50=0或x-1-50=0,再解兩個一次方程得到x1、x2(x1>x2),最后計算x1-x2
解答:解:∵x2-2x+1-2500=0,
∴(x-1)2-502=0,
∴(x-1+50)(x-1-50)=0,
∴x-1+50=0或x-1-50=0
∴x1=51,x2=-49,
∴x1-x2=51-(-49)=100.
故答案為100.
點(diǎn)評:本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個一次式的乘積,這樣原方程轉(zhuǎn)化為兩個一元一次方程,然后解一次方程即可得到一元二次方程的解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常熟市模擬)如圖,△ABC中,∠A=30°,沿BE將此三角形對折,又沿BA′再一次對折,C點(diǎn)落在BE上的C′處,此時
∠C′DB=80°,則原三角形的∠ABC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常熟市模擬)如圖,⊙O是以原點(diǎn)為圓心,
2
為半徑的圓,點(diǎn)P是直線y=-x+6上的一點(diǎn),過點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長PQ的最小值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常熟市模擬)如圖,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10)(8,4),點(diǎn)C在第一象限,且CE⊥x軸于E點(diǎn),動點(diǎn)P在正方形ABCD的邊上,從A出發(fā)沿A-B-C-D以每秒1個單位的速度作勻速運(yùn)動,同時點(diǎn)Q(1,0)以相同的速度在x軸上沿正方向運(yùn)動,當(dāng)P點(diǎn)到達(dá)D點(diǎn)時,兩點(diǎn)同時停止,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)點(diǎn)Q運(yùn)動至(20.5,0)時,則動點(diǎn)P在
BC
BC
邊上;
(2)求正方形點(diǎn)C坐標(biāo);
(3)問是否存在t(0≤t≤10)值,使△OPQ的面積最大?若存在,求出t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常熟市模擬)如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B在第三象限內(nèi),連結(jié)AB交y軸于點(diǎn)E,且S△BOE=
2
3
S△AOB(O為坐標(biāo)原點(diǎn)).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)過點(diǎn)A作直線平行于x軸交拋物線于另一點(diǎn)C.問在y軸上是否存在點(diǎn)P,使△POC與△OBE相似,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請簡要說明理由;
(3)拋物線與x軸的負(fù)半軸交于點(diǎn)D,過點(diǎn)B作直線l∥y軸,點(diǎn)Q在直線l上運(yùn)動,且點(diǎn)Q的縱坐標(biāo)為t,試探索:當(dāng)S△AOB<S△QOD<S△BOC時,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案