【題目】數(shù)學(xué)老師布置了一道思考題“計算:(-)÷()”,小明仔細(xì)思考了一番,用了一種不同的方法解決了這個問題.
小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=.
(1)請你判斷小明的解答是否正確,并說明理由.
(2)請你運用小明的解法解答下面的問題.
計算:(-)÷(+).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:(直接寫結(jié)果)
(1)- 5+ 2 =
(2)-5-2=
(3)5-(-2)=
(4)(-5)×(-2)=
(5)(-2)÷(-6)=
(6)=
(7)=
(8)=
(9)=
(10)=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三月底,某學(xué)校迎來了以“學(xué)海通識品墨韻,開卷有益覽書山”為主題的學(xué)習(xí)節(jié)活動.為了讓同學(xué)們更好的了解二十四節(jié)氣的知識,本次學(xué)習(xí)節(jié)在沿襲以往經(jīng)典項目的基礎(chǔ)上,增設(shè)了“二十四節(jié)氣之旅”項目,并開展了相關(guān)知識競賽.該學(xué)校七、八年級各有400名學(xué)生參加了這次競賽,現(xiàn)從七、八年級各隨機(jī)抽取20名學(xué)生的成績進(jìn)行抽樣調(diào)查.
收集數(shù)據(jù)如下:
七年級:
八年級:
整理數(shù)據(jù)如下:
分析數(shù)據(jù)如下:
根據(jù)以上信息,回答下列問題:
(1)a=______,b=______;
(2)你認(rèn)為哪個年級知識競賽的總體成績較好,說明理由(至少從兩個不同的角度說明推斷的合理性);
(3)學(xué)校對知識競賽成績不低于80分的學(xué)生頒發(fā)優(yōu)勝獎,請你估計學(xué)校七、八年級所有學(xué)生中獲得優(yōu)勝獎的大約有_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1、E1、E2、C2、E3、E4、…在x軸上,已知正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3∥…,則正方形A2018B2018C2018D2018的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平行四邊形ABCD的邊AB,CD上截取AF,CE,使得AF=CE,連接EF,點M,N是線段EF上兩點,且EM=FN,連接AN,CM.
(1)求證:△AFN≌△CEM;
(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b滿足,,且有理數(shù)a、b、c在數(shù)軸上對應(yīng)的點分別為A、B、C.
則______,______,______.
點D是數(shù)軸上A點右側(cè)一動點,點E、點F分別為CD、AD中點,當(dāng)點D運動時,線段EF的長度是否發(fā)生變化,若變化,請說明理由,若不變,請求出其值;
若點A、B、C在數(shù)軸上運動,其中點C以每秒1個單位的速度向左運動,同時點A和點B分別以每秒3個單位和每秒2個單位的速度向右運動請問:是否存在一個常數(shù)m使得不隨運動時間t的改變而改變若存在,請求出m和這個不變化的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出“迎元旦”促銷打折活動,具體優(yōu)惠情況如表:
購物總金額(原價) | 折扣 |
不超過5000元的部分 | 九折 |
超過5000元且不超過10000元的部分 | 八折 |
超過10000元且不超過20000元的部分 | 七折 |
…… | …… |
例如:若購買的商品原價為15000元,實際付款金額為:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若這種品牌電腦的原價為8000元/臺,請求出張老師實際付款金額;
(2)已知張老師購買一臺該品牌電腦實際付費5700元.
①求該品牌電腦的原價是多少元/臺?
②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進(jìn)價為多少元/臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求該拋物線與x軸的交點及頂點的坐標(biāo)(可以用含k的代數(shù)式表示);
(2)若記該拋物線頂點的坐標(biāo)為P(m,n),直接寫出|n|的最小值;
(3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點P(m,n)是線段AD上的動點.
(1)求直線AD及拋物線的解析式;
(2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?
(3)在平面內(nèi)是否存在整點(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com