【題目】已知,如圖,點(diǎn)D是△ABC的邊AB的中點(diǎn),四邊形BCED是平行四邊形,
(1)求證:四邊形ADCE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),平行四邊形ADCE是矩形?

【答案】證明:(1)因?yàn)樗倪呅蜝CED是平行四邊形,
所以BD=CE且BD∥CE,
又因?yàn)镈是△ABC的邊AB的中點(diǎn),
所以AD=BD,即DA=CE,
又因?yàn)镃E∥BD,
所以四邊形ADCE是平行四邊形.
(2)當(dāng)△ABC為等腰三角形且AC=BC時(shí),CD是等腰三角形底邊AB上的中線,則CD⊥AD,平行四邊形ADCE的角∠ADC=90°,
因此四邊形ADCE是矩形.
【解析】證明是平行四邊形的方法有很多,此題用一組對(duì)邊平行且相等較為簡單,在平行四邊形的基礎(chǔ)上只需一個(gè)角是直角即可.
【考點(diǎn)精析】本題主要考查了矩形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】討論99399能被100整除嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購進(jìn)A,B兩種花草,第一次分別購進(jìn)A,B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購進(jìn)A,B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購進(jìn)的A,B兩種花草價(jià)格均分別相同).
(1)A,B兩種花草每棵的價(jià)格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡再求值:
[(a+b)(b﹣2a)﹣(a﹣2b)2+3b2]÷(﹣3a),其中a=﹣3,b=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)M(﹣2,3)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P為正方形ABCD內(nèi)一點(diǎn),且AP=2,將△APB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到△AP′D.
(1)作出旋轉(zhuǎn)后的圖形;
(2)試求△APP′的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年北倉區(qū)經(jīng)濟(jì)總量邁上1000億元的新臺(tái)階,2018年再創(chuàng)新高,全年生產(chǎn)總值約1147億元,1147億用科學(xué)記數(shù)法表示為( 。

A. 1.147×108B. 1.147×109C. 1.147×1010D. 1.147×1011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天安門廣場的面積約440000平方米. 440000這個(gè)數(shù)用科學(xué)計(jì)數(shù)法表示為

A. 44×104 B. 4.4×105 C. 0.44×106 D. 4.4×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中,不能確定四邊形ABCD為平行四邊形的是( 。

A. A=C,B=D B. A=B=C=90°

C. A+B=180°,B+C=180° D. A+B=180°,C+D=180°

查看答案和解析>>

同步練習(xí)冊(cè)答案