【題目】如圖,點(diǎn)E在以AB為直徑的⊙O上,點(diǎn)C是 的中點(diǎn),過(guò)點(diǎn)C作CD垂直于AE,交AE的延長(zhǎng)線于點(diǎn)D,連接BE交AC于點(diǎn)F.
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD= ,BF=15,求AC的長(zhǎng).

【答案】
(1)證明:連接OC,如圖1所示.

∵點(diǎn)C是 的中點(diǎn),

= ,

∴OC⊥BE.

∵AB是⊙O的直徑,

∴AD⊥BE,

∴AD∥OC.

∵AD⊥CD,

∴OC⊥CD,

∴CD是⊙O的切線.


(2)解:過(guò)點(diǎn)O作OM⊥AC于點(diǎn)M,如圖2所示.

∵點(diǎn)C是 的中點(diǎn),

= ,∠BAC=∠CAE,

=

∵cos∠CAD= ,

= ,

∴AB= BF=20.

在Rt△AOM中,∠AMO=90°,AO= AB=10,cos∠OAM=cos∠CAD=

∴AM=AOcos∠OAM=8,

∴AC=2AM=16.


【解析】(1)連接OC,由點(diǎn)C是 的中點(diǎn)利用垂徑定理可得出OC⊥BE,由AB是⊙O的直徑可得出AD⊥BE,進(jìn)而可得出AD∥OC,再根據(jù)AD⊥CD可得出OC⊥CD,由此即可證出CD是⊙O的切線.(2)過(guò)點(diǎn)O作OM⊥AC于點(diǎn)M,由點(diǎn)C是 的中點(diǎn)利用圓周角定理可得出∠BAC=∠CAE,根據(jù)角平分線的定理結(jié)合cos∠CAD= 可求出AB的長(zhǎng)度,在Rt△AOM中,通過(guò)解直角三角形可求出AM的長(zhǎng)度,再根據(jù)垂徑定理即可得出AC的長(zhǎng)度.
【考點(diǎn)精析】本題主要考查了解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD中,ABDC,連接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分線相交于點(diǎn)F,若∠ADC=110°,則∠F的度數(shù)為( 。

A. 115° B. 110° C. 105° D. 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩個(gè)工程隊(duì)共同修建一條公路,從兩端同時(shí)開(kāi)始,到工程結(jié)束時(shí),甲工程 隊(duì)共施工了天,乙隊(duì)在中途接到緊急任務(wù)停止施工一段時(shí)間,回來(lái)后按照以前的施工 速度繼續(xù)施工至結(jié)束,設(shè)甲、乙兩工程隊(duì)各自施工的長(zhǎng)度分別為(米),(米),甲 隊(duì)施工的時(shí)間為(天),,之間的函數(shù)圖象如圖所示.

1)這條公路的總長(zhǎng)度是______米;

2)求乙隊(duì)在恢復(fù)施工后,之間的函數(shù)表 達(dá)式;

3)求在修建該條公路的過(guò)程中,甲、乙兩隊(duì)共同修建完米長(zhǎng)時(shí)甲隊(duì)施工的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸分別交于,兩點(diǎn),以線段為邊,在第一象限內(nèi)作正方形,將正方形沿軸負(fù)方向,平移個(gè)單位長(zhǎng)度,使點(diǎn)恰好落在直線上,則的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB=90°CDABD,CE平分∠ACBABEEFABCBF

1CDEF平行嗎?并說(shuō)明理由;

2)若∠A=72°,求∠FEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形內(nèi)有一點(diǎn)滿足,.連接.

1)求證:;

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖△ABC的頂點(diǎn)坐標(biāo)分別為A(-4,-3),B(0,-3),C(-2,1),如將B點(diǎn)向右平移2個(gè)單位后再向上平移4個(gè)單位到達(dá)B1點(diǎn),若設(shè)△ABC的面積為S1 , △AB1C的面積為S2 , 則S1 , S2的大小關(guān)系為(  )

A.S1>S2
B.S1=S2
C.S1<S2
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為解決部分市民冬季集中取暖問(wèn)題需鋪設(shè)一條長(zhǎng)3000米的管道,為盡量減少施工對(duì)交通造成的影響,實(shí)施施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程 ,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為(
A.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期15天才完成
B.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期15天才完成
C.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前15天才完成
D.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前15天才完成

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,三個(gè)半圓依次相外切,它們的圓心都在x軸的正半軸上并與直線y=x相切,設(shè)半圓C1、半圓C2、半圓C3的半徑分別是r1、r2、r3 , 則當(dāng)r1=1時(shí),r3=

查看答案和解析>>

同步練習(xí)冊(cè)答案