【題目】如圖,已知l1l2,射線MN分別和直線l1,l2交于AB,射線ME分別和直線l1,l2交于C、D,點(diǎn)PA、B間運(yùn)動(dòng)(PA、B兩點(diǎn)不重合),設(shè)∠PDB,∠PCA,∠CPD

1)試探索α,βγ之間有何數(shù)量關(guān)系?說明理由.

2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),ACP≌△BPD說明理由.

3)在(2)的條件下,當(dāng)ACP≌△BPD時(shí),PCPD之間有何位置關(guān)系,說明理由.

【答案】(1)∠γ=α+β;(2)當(dāng)AP=BD=3,△ACP≌△BPD.3CPPD

【解析】

1)過點(diǎn)PPFl1,根據(jù)l1l2,可知PFl2,故可得出∠α=DPF,∠β=CPF,由此即可得出結(jié)論;

2)根據(jù)平行線的性質(zhì)得到BDMN,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

3)根據(jù)全等三角形的性質(zhì)得到∠ACP=DPB,根據(jù)垂直的定義即可得到結(jié)論.

解:(1)∠γ=α+β,

理由:過點(diǎn)PPFl1(如圖1),

l1l2,

PFl2,

∴∠α=DPF,∠β=CPF,

∴∠γ=DPF+CPF=α+β

2)當(dāng)AP=BD=3,△ACP≌△BPD

l1l2,AC垂直于MN

BDMN,

∴∠CAP=PBD=90°,

AB=9,

PB=6,

AC=PB,

在△CAP與△PBD中,

∴△ACP≌△BPD,

∴當(dāng)AP=3時(shí),△ACP≌△BPD

3CPPD,

理由:∵△ACP≌△BPD,

∴∠ACP=DPB

∵∠ACP+APC=90°,

∴∠APC+DPB=90°,

∴∠CPD=90°

CPPD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形A1B1C1D1的邊長(zhǎng)為2,∠A1B1C1=60°,對(duì)角線A1C1,B1D1相交于點(diǎn)O.以點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系.以B1D1為對(duì)角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對(duì)角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2為對(duì)角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn)A1,A2,A3,…,An,則點(diǎn)An的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點(diǎn),且ABM≌△DCME、F分別是線段BMCM的中點(diǎn).

1)求證:平行四邊形ABCD是矩形.

2)求證:EFMN互相垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=ADBC=DC,ACBD相交于點(diǎn)O,則①CA平分∠BCD;②ACBD;③∠ABC=ADC=90°;④四邊形ABCD的面積為ACBD.上述結(jié)論正確的個(gè)數(shù)是( 。

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教練想從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加射擊錦標(biāo)賽,故先在射擊隊(duì)舉行了一場(chǎng)選拔比賽.在相同的條件下各射靶次,每次射靶的成績(jī)情況如圖所示.

甲射靶成績(jī)的條形統(tǒng)計(jì)圖

乙射靶成績(jī)的折線統(tǒng)計(jì)圖

)請(qǐng)你根據(jù)圖中的數(shù)據(jù)填寫下表:

平均數(shù)

眾數(shù)

方差

__________

__________

__________

)根據(jù)選拔賽結(jié)果,教練選擇了甲運(yùn)動(dòng)員參加射擊錦標(biāo)賽,請(qǐng)給出解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠ACB90°,ACBC,ADCE,BECE,垂足分別是點(diǎn)D,E

(1)求證:BEC≌△CDA

(2)當(dāng)AD3,BE1時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形邊在軸上,點(diǎn)坐標(biāo)為的長(zhǎng)分別為3、8的中點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),與邊交于點(diǎn)

1)求的值及經(jīng)過、兩點(diǎn)的一次函數(shù)的表達(dá)式;

2)若軸上有一點(diǎn),使的值最小,試求出點(diǎn)的坐標(biāo);

3)在(2)的條件下,連接、、,在直線上找一點(diǎn),使得直接寫出符合條件的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB6厘米,AD8厘米.延長(zhǎng)BC到點(diǎn)E,使CE3厘米,連接DE.動(dòng)點(diǎn)PB點(diǎn)出發(fā),以2厘米/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),連接DP.設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:

(1)當(dāng)t為何值時(shí),△PCD為等腰直角三角形?

(2)設(shè)△PCD的面積為S(平方厘米),試確定St的關(guān)系式;

(3)當(dāng)t為何值時(shí),△PCD的面積為長(zhǎng)方形ABCD面積的

(4)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以2厘米/秒的速度沿BCCDDA向終點(diǎn)A運(yùn)動(dòng),是否存在某一時(shí)刻t,使△ABP和△DCE全等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,垂足為直線上一動(dòng)點(diǎn)(不與點(diǎn)重合),在的右側(cè)作,使得,連接

1)求證:;

2)當(dāng)在線段上時(shí)

求證:;

, ;

3)當(dāng)CEAB時(shí),若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案