【題目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O經(jīng)過(guò)A、C兩點(diǎn),且圓心O落在AB邊上.(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)
(2)求證:BC是(1)中所作⊙O的切線.
【答案】
(1)解:作圖如圖1:
(2)證明:如圖2,
連接OC,
∵OA=OC,∠A=25°
∴∠BOC=50°,
又∵∠B=40°,
∴∠BOC+∠B=90°
∴∠OCB=90°
∴OC⊥BC
∴BC是⊙O的切線.
【解析】(1)作出線段AC的垂直平分線進(jìn)而得出AC垂直平分線與線段AB的交點(diǎn)O,進(jìn)而以AO為半徑做圓即可;(2)連接CO,再利用已知得出∠OCB=90°,進(jìn)而求出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的判定定理的相關(guān)知識(shí),掌握切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在Rt△ACB中,C為直角頂點(diǎn),∠ABC=25°,O為斜邊中點(diǎn).將OA繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ°(0<θ<180)至OP,當(dāng)△BCP恰為軸對(duì)稱圖形時(shí),θ的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將斜邊長(zhǎng)為2個(gè)等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點(diǎn)P從點(diǎn)O出發(fā)沿著折線以每秒 的速度向右運(yùn)動(dòng),2016秒時(shí),點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校計(jì)劃選購(gòu)甲、乙兩種圖書作為“校園讀書節(jié)”的獎(jiǎng)品,已知甲種圖書單價(jià)比乙種圖書貴4元,用3000元購(gòu)進(jìn)甲種圖書的數(shù)量與用2400元購(gòu)進(jìn)乙種圖書的數(shù)量相同.
(1)甲、乙兩種圖書的單價(jià)分別為多少元?
(2)學(xué)校計(jì)劃購(gòu)買這兩種圖書共100本,請(qǐng)求出所需經(jīng)費(fèi)W(單位:元)與購(gòu)買甲種圖書m(單位:本)之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,要使投入的經(jīng)費(fèi)不超過(guò)1820元,且使購(gòu)買的甲種圖書的數(shù)量不少于乙種圖書數(shù)量,則共有幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O經(jīng)過(guò)A、C兩點(diǎn),且圓心O落在AB邊上.(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)
(2)求證:BC是(1)中所作⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列敘述中:
①一組對(duì)邊相等的四邊形是平行四邊形;
②函數(shù)y= 中,y隨x的增大而減。
③有一組鄰邊相等的平行四邊形是菱形;
④有不可能事件A發(fā)生的概率為0.0001.
正確的敘述有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E、F在四邊形ABCD的對(duì)角線延長(zhǎng)線上,AE=CF,DE∥BF,∠1=∠2.
(1)求證:△AED≌△CFB;
(2)若AD⊥CD,四邊形ABCD是什么特殊四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=ax+b經(jīng)過(guò)(1,3),(0,﹣2),則a﹣b=( )
A.﹣1
B.﹣3
C.3
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點(diǎn),且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長(zhǎng)EF交AD的延長(zhǎng)線于G,當(dāng)FG=1時(shí),求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com