【題目】有20筐白菜,以每筐30千克為標(biāo)準(zhǔn),超過或不足的分別用正、負來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差(單位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐要重多少千克?
(2)與標(biāo)準(zhǔn)質(zhì)量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2元,則出售這20筐白菜可賣多少元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017湖南省益陽市)在平面直角坐標(biāo)系中,將一點(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點叫這一點的“互換點”,如(﹣3,5)與(5,﹣3)是一對“互換點”.
(1)任意一對“互換點”能否都在一個反比例函數(shù)的圖象上?為什么?
(2)M、N是一對“互換點”,若點M的坐標(biāo)為(m,n),求直線MN的表達式(用含m、n的代數(shù)式表示);
(3)在拋物線的圖象上有一對“互換點”A、B,其中點A在反比例函數(shù)的圖象上,直線AB經(jīng)過點P(,),求此拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF;
求證:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用同樣大小的兩種不同顏色的正方形紙片,按下圖方式拼正方形.
第(1)個圖形中有1個正方形;
第(2)個圖形有1+3=4個小正方形;
第(3)個圖形有1+3+5=9個小正方形
第(5)個圖形有 個小正方形(直接寫出結(jié)果);
(1)根據(jù)上面的發(fā)現(xiàn)我們可以猜想:1+3+5+7+…+(2n﹣1)= (用含n的代數(shù)式表示);
(2)請根據(jù)你的發(fā)現(xiàn)計算:①1+3+5+7+…+99= ;②101+103+105+…+199= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點A對應(yīng)的數(shù)是-6,點B對應(yīng)的數(shù)是-2,點O對應(yīng)的數(shù)是0.動點P、Q分別從A、B同時出發(fā),以每秒3個單位,每秒1個單位的速度向右運動。在運動過程中,線段PQ的長度始終是另一線段長的整數(shù)倍,這條線段是( )
A.PBB.OPC.OQD.QB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點C1的坐標(biāo)為(4,0),寫出頂點A1,B1的坐標(biāo),并畫出△A1B1C1;
(2)若△ABC和△A2B2C2關(guān)于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標(biāo);
(3)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3,寫出△A3B3C3的各頂點的坐標(biāo),并畫出△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題解決:如圖1,△ABC中,AF為BC邊上的中線,則S△ABF= S△ABC.
問題探究:
(1)如圖2,CD,BE分別是△ABC的中線,S△BOC與S四邊形ADOE相等嗎?
解:△ABC中,由問題解決的結(jié)論可得,S△BCD=S△ABC,S△ABE=S△ABC.
∴S△BCD=S△ABE
∴S△BCD﹣S△BOD=S△ABE﹣S△BOD
即S△BOC=S四邊形ADOE.
(2)圖2中,仿照(1)的方法,試說明S△BOD=S△COE.
(3)如圖3,CD,BE,AF分別是△ABC的中線,則S△BOC= S△ABC,S△AOE= S△ABC,S△BOD= S△ABF.
問題拓展:
(4)①如圖4,E、F分別為四邊形ABCD的邊AD、BC的中點,請直接寫出陰影部分的面積與四邊形ABCD的面積之間的數(shù)量關(guān)系:S陰影= S四邊形ABCD.
②如圖5,E、F、G、H分別為四邊形ABCD的邊AD、BC、AB、CD的中點,請直接寫出陰影部分的面積與四邊形ABCD的面積之間的數(shù)量關(guān)系:S陰影= S四邊形ABCD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥AB交AB于N,交AC于N,若BM+CN=8,則線段MN的長為( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B 兩鄉(xiāng)分別由大米 200 噸、300 噸.現(xiàn)將這些大米運至 C、D 兩個糧站儲存.已知 C 糧站可 儲存 240 噸,D 糧站可儲存 200 噸,從 A 鄉(xiāng)運往 C、D 兩處的費用分別為每噸 20 元和 25 元,B 鄉(xiāng) 運往 C、D 兩處的費用分別為每噸 15 元和 18 元.設(shè) A 鄉(xiāng)運往 C 糧站大米 x 噸.A、B 兩鄉(xiāng)運往兩 個糧站的運費分別為 yA、yB 元.
(1)請?zhí)顚懴卤,并求?/span> yA、yB 與 x 的關(guān)系式:
C 站 | D 站 | 總計 | |
A 鄉(xiāng) | x 噸 | 200 噸 | |
B 鄉(xiāng) | 300 噸 | ||
總計 | 240 噸 | 260 噸 | 500 噸 |
(2)試討論 A、B 鄉(xiāng)中,哪一個的運費較少;
(3)若 B 鄉(xiāng)比較困難,最多只能承受 4830 元費用,這種情況下,運輸方案如何確定才能使總運費 最少?最少的費用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com