【題目】閱讀下面材料,完成(1)-(3)題
數(shù)學(xué)課上,老師出示了這樣一道題:如圖,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,連接DC、BE交于點(diǎn)F,過(guò)A作AG⊥DC于點(diǎn)G,探究線段FG、FE、FC之間的數(shù)量關(guān)系,并證明.
同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法:
小明:“通過(guò)觀察和度量,發(fā)現(xiàn)線段BE與線段DC相等.”
小偉:“通過(guò)觀察發(fā)現(xiàn),∠AFE與α存在某種數(shù)量關(guān)系.”
老師:“通過(guò)構(gòu)造全等三角形,從而可以探究出線段FG、FE、FC之間的數(shù)量關(guān)系.”
(1)求證:BE=CD;
(2)求∠AFE的度數(shù)(用含α的式子表示);
(3)探究線段FG、FE、FC之間的數(shù)量關(guān)系,并證明.
【答案】(1)見(jiàn)解析;(2)∠AFE=;(3)EF=FC+2GF,見(jiàn)解析
【解析】
(1)由∠DAB=∠CAE=α,可得∠DAC=∠BAE,根據(jù)“SAS”可證△ADC≌△ABE,可得DC=BE;
(2)由△ADC≌△ABE可得∠AEF=∠ACD,即可證點(diǎn)A,點(diǎn)E,點(diǎn)C,點(diǎn)F四點(diǎn)共圓,可得∠AFE=∠ACE,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理可求∠AFE的度數(shù);
(3)結(jié)論:EF=FC+2GF.由題意可得∠AFD==∠AFE,過(guò)點(diǎn)作AH⊥BE,可證△AGF≌△AHF,可得AG=AH,GF=HF,即可證Rt△AGC≌Rt△AHE,可得GC=HE,由EF﹣FC=2GF可得結(jié)論.
證明:(1)∵∠DAB=∠CAE=α,
∴∠DAC=∠BAE,且AD=AB,AC=AE
∴△ADC≌△ABE(SAS)
∴DC=BE.
(2)∵△ADC≌△ABE
∴∠AEF=∠ACD
∴點(diǎn)A,點(diǎn)E,點(diǎn)C,點(diǎn)F四點(diǎn)共圓
∴∠AFE=∠ACE
∵AC=AE,∠DAB=∠CAE=α
∴∠ACE=,
∴∠AFE=.
(3)結(jié)論:EF=FC+2GF.
理由:∵△ADC≌△ABE
∴∠ADC=∠ABE
∴點(diǎn)A,點(diǎn)D,點(diǎn)B,點(diǎn)F四點(diǎn)共圓
∴∠AFD=∠ABD
∵AB=AD,∠DAB=∠CAE=α
∴∠ABD=,
∴∠AFD=,
∴∠AFE=∠AFD
如圖,過(guò)點(diǎn)作AH⊥BE,
∵∠AFE=∠AFD,∠AGF=∠AHF,AF=AF
∴△AGF≌△AHF(AAS)
∴AG=AH,GF=HF,
∵AG=AH,AE=AC
∴Rt△AGC≌Rt△AHE(HL)
∴GC=HE
∵EF﹣FC=HE+FH﹣FC=GC+FH﹣FC=GF+FC+FH﹣FC=2GF,
∴EF=FC+2GF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABOC中點(diǎn)A坐標(biāo)為(4,5),點(diǎn)E是x軸上一動(dòng)點(diǎn),連接AE,把∠B沿AE折疊,當(dāng)點(diǎn)B落在y軸上時(shí)點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的直徑為,的度數(shù)為,點(diǎn)是的中點(diǎn),在直徑上作出點(diǎn),使的值最小,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的三倍,則稱(chēng)這樣的方程為“3倍根方程”,以下說(shuō)法不正確的是( 。
A. 方程x2﹣4x+3=0是3倍根方程
B. 若關(guān)于x的方程(x﹣3)(mx+n)=0是3倍根方程,則m+n=0
C. 若m+n=0且m≠0,則關(guān)于x的方程(x﹣3)(mx+n)=0是3倍根方程
D. 若3m+n=0且m≠0,則關(guān)于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在∠MON的角平分線上,過(guò)點(diǎn)P作OP的垂線交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分別為A、B,EP∥BD,則下列結(jié)論錯(cuò)誤的是( 。
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,點(diǎn)E在邊AB上,連結(jié)DE,CE.
(1)若∠A=∠B=∠DEC=50°,找出圖中的相似三角形,并說(shuō)明理由;
(2)若四邊形ABCD為矩形,AB=5,BC=2,且圖中的三個(gè)三角形都相似,求AE的長(zhǎng).
(3)若∠A=∠B=90°,AD<BC,圖中的三個(gè)三角形都相似,請(qǐng)判斷AE和BE的數(shù)量關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD、AE分別是△ABC的中線、高,且AB=4cm,AC=3cm,請(qǐng)解答下列問(wèn)題:
(1)△ABD與△ACD的面積大小有怎樣的關(guān)系?并說(shuō)明理由.
(2)△ABD與△ACD的周長(zhǎng)之差是多少?
(3)當(dāng)AE=2.5cm ,BC=6cm時(shí),試求△ABD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com