【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2x+m(m>0)的對稱軸與比例系數(shù)為5的反比例函數(shù)圖象交于點A,與x軸交于點B,拋物線的圖象與y軸交于點C,且OC=3OB.
(1)求點A的坐標(biāo);
(2)求直線AC的表達式;
(3)點E是直線AC上一動點,點F在x軸上方的平面內(nèi),且使以A、B、E、F為頂點的四邊形是菱形,直接寫出點F的坐標(biāo).
【答案】(1)點A的坐標(biāo)為(1,5);(2)y=2x+3;(3)F點的坐標(biāo)為(﹣3,2)或或.
【解析】
(1)可求得拋物線對稱軸方程和反比例函數(shù)解析式,則可求得A點坐標(biāo);
(2)可求得B點坐標(biāo),再由OC=3OB可求得C點坐標(biāo),利用待定系數(shù)法可求得直線AC的表達式;
(3)當(dāng)AB為菱形的邊時,則BE=AB或AE=AB,設(shè)出E點坐標(biāo),可表示出BE的長,可得到關(guān)于E點坐標(biāo)的方程,可求得E點坐標(biāo),由AB∥EF,則可求得F點的坐標(biāo);當(dāng)AB為對角線時,則EF被AB垂直平分,則可求得E的縱坐標(biāo),從而可求得E點坐標(biāo),利用對稱性可求得F點的坐標(biāo).
(1)由題意可知二次函數(shù)圖象的對稱軸是直線x=1,反比例函數(shù)解析式是,
把x=1代入,得y=5,
∴點A的坐標(biāo)為(1,5);
(2)由題意可得點B的坐標(biāo)為(1,0),
∵OC=3OB,
∴OC=3,
∵m>0,
∴m=3,
可設(shè)直線AC的表達式是y=kx+3,
∵點A在直線AC上,
∴k=2,
∴直線AC的表達式是y=2x+3;
(3)當(dāng)AB、BE為菱形的邊時,如圖1,
設(shè)E(x,2x+3),則,
∵四邊形ABEF為菱形,
∴AB=BE=5,
∴,解得x=1(E、A重合,舍去)或x=﹣3,
此時E(﹣3,﹣3),
∵EF∥AB且EF=AB,
∴F(﹣3,2),
當(dāng)AB、AE為邊時,則AE=AB=5,
同理可求得,
∴,解得(此時F點在第三象限,舍去)或,
∴E(1+ ,5+2),
∵EF∥AB且EF=AB,
∴;
當(dāng)AB為對角線時,如圖2,
則EF過AB的中點,
∵A(1,5),B(1,0),
∴AB的中點為,
∵EF⊥AB,
∴EF∥x軸,
∴E點縱坐標(biāo)為,代入y=2x+3可得,解得,
∴,
∴;
綜上可知F點的坐標(biāo)為(﹣3,2)或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)習(xí)電學(xué)知識后,用四個開關(guān)按鍵(每個開關(guān)按鍵閉合的可能性相等)、一個電源和一個燈泡設(shè)計了一個電路圖
(1)若小明設(shè)計的電路圖如圖1(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關(guān)按鍵,燈泡能發(fā)光的概率;
(2)若小明設(shè)計的電路圖如圖2(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時時閉合其中的兩個開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將的邊繞著點順時針旋轉(zhuǎn)得到,邊AC繞著點A逆時針旋轉(zhuǎn)得到,聯(lián)結(jié).當(dāng)時,我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).
(1)求證:;
(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果與相似,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△OAB在直角坐標(biāo)系中的位置如圖,點A在第一象限,點B在x軸正半軸上,OA=OB=6,∠AOB=30°.
(1)求點A、B的坐標(biāo);
(2)開口向上的拋物線經(jīng)過原點O和點B,設(shè)其頂點為E,當(dāng)△OBE為等腰直角三角形時,求拋物線的解析式;
(3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點,已知,P(m,2)(m>0),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△OAB在直角坐標(biāo)系中的位置如圖,點A在第一象限,點B在x軸正半軸上,OA=OB=6,∠AOB=30°.
(1)求點A、B的坐標(biāo);
(2)開口向上的拋物線經(jīng)過原點O和點B,設(shè)其頂點為E,當(dāng)△OBE為等腰直角三角形時,求拋物線的解析式;
(3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點,已知,P(m,2)(m>0),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AD⊥BC,垂足為D,且AD=4,以AD為直徑作圓O,交AB邊于點G,交AC邊于點F,如果點F恰好是的中點.
(1)求CD的長度.
(2)當(dāng)BD=3時,求BG的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com