【題目】已知OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A在第一象限,點(diǎn)Bx軸正半軸上,OAOB6,∠AOB30°

1)求點(diǎn)AB的坐標(biāo);

2)開口向上的拋物線經(jīng)過(guò)原點(diǎn)O和點(diǎn)B,設(shè)其頂點(diǎn)為E,當(dāng)OBE為等腰直角三角形時(shí),求拋物線的解析式;

3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點(diǎn),已知Pm,2)(m0),求m的值.

【答案】(1)A點(diǎn)坐標(biāo)為B點(diǎn)坐標(biāo)為(6,0);(2;(3m的值為

【解析】

1)根據(jù)30°角所對(duì)的直角邊是斜邊的一半,可得AC的長(zhǎng),再根據(jù)銳角三角函數(shù),可得OC,根據(jù)點(diǎn)的坐標(biāo),可得答案;

2)根據(jù)等腰直角三角形,可得E點(diǎn)坐標(biāo),再根據(jù)待定系數(shù)法,可得答案;

3)根據(jù)30°角所對(duì)的直角邊是斜邊的一半,可得∠CNP=30°,再根據(jù)勾股定理求得OE的長(zhǎng),根據(jù)點(diǎn)的坐標(biāo),可得N點(diǎn)坐標(biāo),根據(jù)點(diǎn)的左右平移,可得點(diǎn)P坐標(biāo).

1)如圖1

ACOBC點(diǎn),

OBOA6,得B點(diǎn)坐標(biāo)為(6,0),

OBOA6,∠AOB30°,得

,

A點(diǎn)坐標(biāo)為;

2)如圖2,

由其頂點(diǎn)為E,當(dāng)OBE為等腰直角三角形,得

E點(diǎn)坐標(biāo)為(3,﹣3).

設(shè)拋物線的解析式為yax323,將B點(diǎn)坐標(biāo)代入,解得,

拋物線的解析式為

化簡(jiǎn)得;

3)如圖3,

PN2, ,PC1

CNP=∠AOB30°,

NPOB,

NE2,得ON4,

由勾股定理,得

,即

N向右平移2個(gè)單位得

N向左平移2個(gè)單位,得

m的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程

(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;

(2)若等腰三角形ABC的一邊長(zhǎng)為,另兩邊的長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),且與軸交于點(diǎn);點(diǎn)在反比例函數(shù)的圖象上,以點(diǎn)為圓心,半徑為的作圓軸,軸分別相切于點(diǎn)、

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)請(qǐng)連結(jié),并求出的面積;

3)直接寫出當(dāng)時(shí),的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)yx22x+mm0)的對(duì)稱軸與比例系數(shù)為5的反比例函數(shù)圖象交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線的圖象與y軸交于點(diǎn)C,且OC3OB

1)求點(diǎn)A的坐標(biāo);

2)求直線AC的表達(dá)式;

3)點(diǎn)E是直線AC上一動(dòng)點(diǎn),點(diǎn)Fx軸上方的平面內(nèi),且使以A、BE、F為頂點(diǎn)的四邊形是菱形,直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC 中,ABACD、E是斜邊BC上兩點(diǎn),且∠DAE45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB.設(shè)BEa,DCb,那么AB_____.(用含ab的式子表示AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠ABC45°,AB14,

1)求:ABC的面積;

2)若以C為圓心的圓C與直線AB相切,以A為圓心的圓A與圓C相切,試求圓A的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某足球特色學(xué)校在商場(chǎng)購(gòu)買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費(fèi)2000元、1400元購(gòu)買甲、乙兩種足球,這樣購(gòu)得甲種足球的數(shù)量是購(gòu)得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價(jià)各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,

(1)求證:CF=2AF

(2)求tan∠CFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案