如圖,分別以線段AC的兩個端點A,C為圓心,大于AC的長為半徑畫弧,兩弧相交于B,D兩點,連接BD,AB,BC,CD,DA,以下結(jié)論:
①BD垂直平分AC;
②AC平分∠BAD;
③AC=BD;
④四邊形ABCD是中心對稱圖形.
其中正確的有( 。
A. ①②③ B.①③④ C.①②④ D. ②③④
科目:初中數(shù)學 來源: 題型:
如圖,已知∠EFD=∠BCA,BC=EF,AF=DC.若將△ABC沿AD向右平移,使點C與點D重合,則所得到的圖形形狀是( 。
A. 梯形 B.平行四邊形 C矩形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,矩形ABCD中,AB=6cm,BC=8cm,將矩形沿著BD方向移動,設BB′=x.
(1)當x為多少時,才能使平移后的矩形與原矩形重疊部分的面積為24cm2?
(2)依次連接A′A,AC,CC′,C′A′,四邊形ACC′A′可能是菱形嗎?若可能,求出x的值;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在矩形ABCD中,AD=4,DC=3,將△ADC繞點A按逆時針方向旋轉(zhuǎn)到△AEF(點A、B、E在同一直線上),則AC在運動過程中所掃過的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
推理證明:如圖1,在正方形ABCD和正方形CGFE中,連結(jié)DE、BG,設△DCE的面積為S1,△BCG的面積為S2,求證:S1=S2.
猜想論證:如圖2,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)后得到矩形FECG,連結(jié)DE、BG,設△DCE的面積為S1,△BCG的面積為S2,猜想S1、S2的數(shù)量關(guān)系,并加以證明.
拓展探究:如圖3,在△ABC中,AB=AC=10cm,∠B=30°,把△ABC沿AC翻折到△ACE,過點A作AD∥CE交BC于點D,在線段CE上存在點P,使△ABP的面積等于△ACD的面積,請你直接寫出CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,按以下步驟作圖:
①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于M,N兩點;
②作直線MN交AB于點D,連接CD,若CD=AC,∠B=25°,則∠ACB的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠B=90°,分別以點A、C為圓心,大于AC長為半徑畫弧,兩弧相交于點M、N,連接MN,與AC、BC分別交于點D、E,連接AE.
(1)求∠ADE;(直接寫出結(jié)果)
(2)當AB=3,AC=5時,求△ABE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列命題中,其逆命題成立的是 .(只填寫序號)
①同旁內(nèi)角互補,兩直線平行;
②如果兩個角是直角,那么它們相等;
③如果兩個實數(shù)相等,那么它們的平方相等;
④如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com