【題目】如圖,點O在∠APB的平分線上,⊙O與PA相切于點C.
(1)求證:直線PB與⊙O相切;
(2)PO的延長線與⊙O交于點E.若⊙O的半徑為3,PC=4.求弦CE的長.
【答案】
(1)證明:連接OC,作OD⊥PB于D點.
∵⊙O與PA相切于點C, ∴OC⊥PA
(2)解:設(shè)PO交⊙O于F,連接CF.
∵OC=3,PC=4,∴PO=5,PE=8.
∵⊙O與PA相切于點C, ∴∠PCF=∠E.
又∵∠CPF=∠EPC, ∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直徑, ∴∠ECF=90°.
設(shè)CF=x,則EC=2x.
則x2+(2x)2=62, 解得x= .
則EC=2x= .
【解析】要證明直線PB與⊙O相切,添加輔助線連接OC,作OD⊥PB于D點,再證明OD是圓的半徑,根據(jù)角平分線上的點到角兩邊的距離相等及切線的性質(zhì),易證得結(jié)論。
(2)根據(jù)已知易證得△PCF∽△PEC,得出對應(yīng)邊成比例,證出CF:CE=1:2.再根據(jù)EF是直徑得出△CEF是直角三角形,利用勾股定理求解即可。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點P(﹣3,0),且與兩坐標(biāo)軸截得的三角形面積為4,則此一次函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點為坐標(biāo)原點,的三個頂點坐標(biāo)分別為,,,且,其中,滿足.
(1)求點,的坐標(biāo);
(2)點從點出發(fā),以每秒1個單位長度的速度沿軸負方向運動,設(shè)點的運動時間為秒.連接、,用含有的式子表示的面積為(直接寫出的取值范圍);
(3)在(2)的條件下,是否存在的值,使得,若存在,請求出的值,并直接寫出中點的坐標(biāo);若不存,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB⊥AC,點E是BC的中點,AE與BD交于點F,且F是AE的中點.
(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機,已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?
(2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應(yīng)選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線y=kx+6和直線y=(k+1)x+6(k是正整數(shù))及x軸圍成的三角形面積為Sk(k=1,2,3,…,8),則S1+S2+S3+…+S8的值是( 。
A. B. C. 16D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進一批紀(jì)念冊,每本進價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點A在第一象限,延長AB交y軸負半軸于點D,延長CA到點E,使AE=AC,雙曲線y= (x>0)的圖象過點E.若△BCD的面積為2 ,則k的值為( )
A.4
B.4
C.2
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com