【題目】某家電商場(chǎng)計(jì)劃用9萬(wàn)元從生產(chǎn)廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.
(1)若家電商場(chǎng)同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)你計(jì)算一下商場(chǎng)有哪幾種進(jìn)貨方案?
(2)若商場(chǎng)銷(xiāo)售一臺(tái)A種電視機(jī)可獲利150元,銷(xiāo)售一臺(tái)B種電視機(jī)可獲利200元,銷(xiāo)售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷(xiāo)售時(shí)獲利最多,應(yīng)選擇哪種方案?
【答案】(1)有兩種進(jìn)貨方案:購(gòu)進(jìn)A種25臺(tái),B種25臺(tái)或購(gòu)進(jìn)A種35臺(tái),C種15臺(tái);(2)選擇購(gòu)A、C兩種型號(hào)的電視機(jī),理由見(jiàn)解析.
【解析】
(1)分三種情況討論:①只購(gòu)進(jìn)A、B兩種型號(hào),②只購(gòu)進(jìn)B、C兩種型號(hào),③只購(gòu)進(jìn)A、C兩種型號(hào),分別列出方程求解;
(2)分別計(jì)算(1)中進(jìn)貨方案獲得的利潤(rùn),選擇利潤(rùn)最多的方案即可.
解:(1)只購(gòu)進(jìn)A、B兩種型號(hào)時(shí),設(shè)購(gòu)進(jìn)A型臺(tái),則B型(50-)臺(tái),
1500+2100(50-)=90000,
解得=25,50-=25臺(tái).
只購(gòu)進(jìn)B、C兩種型號(hào)時(shí),設(shè)購(gòu)進(jìn)B型臺(tái),則C型(50-)臺(tái),
2100+2500(50-)=90000,
解得=87.5(舍去)
只購(gòu)進(jìn)A、C兩種型號(hào)時(shí),設(shè)購(gòu)進(jìn)A型z臺(tái),則C型(50-z)臺(tái),
1500+2500(50-)=90000,
解得=35,50-=15臺(tái)
所以有兩種進(jìn)貨方案:購(gòu)進(jìn)A種25臺(tái),B種25臺(tái)或購(gòu)進(jìn)A種35臺(tái),C種15臺(tái).
(2)當(dāng)只購(gòu)A、B兩種型號(hào)時(shí),利潤(rùn):25×150+25×200=8750元
當(dāng)只購(gòu)A、C兩種型號(hào)時(shí),利潤(rùn):35×150+15×250=9000元
所以選擇購(gòu)A、C兩種型號(hào)的電視機(jī).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,有四個(gè)點(diǎn)A(﹣8,3)、B(﹣4,5)、C(0,n)、D(m,0),當(dāng)四邊形ABCD的周長(zhǎng)最短時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中,且A、B、C.將其平移后得到,若A,B的對(duì)應(yīng)點(diǎn)是,,C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.
(1)在平面直角坐標(biāo)系中畫(huà)出△ABC;
(2)寫(xiě)出點(diǎn)的坐標(biāo)是_____________,坐標(biāo)是___________;
(3)此次平移也可看作向________平移了____________個(gè)單位長(zhǎng)度,再向_______平移了______個(gè)單位長(zhǎng)度得到△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無(wú)限循環(huán)小數(shù),事實(shí)上,所有的有理數(shù)都可以化為分?jǐn)?shù)形式(整數(shù)可看作分母為1的分?jǐn)?shù)),那么無(wú)限循環(huán)小數(shù)如何表示為分?jǐn)?shù)形式呢?請(qǐng)看以下示例:
例:將化為分?jǐn)?shù)形式,
由于,設(shè),①
得,②
②①得,解得,于是得.
同理可得,.
根據(jù)以上閱讀,回答下列問(wèn)題:(以下計(jì)算結(jié)果均用最簡(jiǎn)分?jǐn)?shù)表示)
(類(lèi)比應(yīng)用)
(1) ;
(2)將化為分?jǐn)?shù)形式,寫(xiě)出推導(dǎo)過(guò)程;
(遷移提升)
(3) , ;(注,)
(拓展發(fā)現(xiàn))
(4)若已知,則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.
(1)求證:直線PB與⊙O相切;
(2)PO的延長(zhǎng)線與⊙O交于點(diǎn)E.若⊙O的半徑為3,PC=4.求弦CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;② ;③ac-b+1=0;④OA·OB= .其中正確結(jié)論的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD為正方形ABCD的對(duì)角線,BE平分∠DBC,交DC與點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DCF,若CE=1 cm,則BF=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一批共享單車(chē)需要維修,維修后繼續(xù)投放騎用,現(xiàn)有甲、乙兩人做維修,甲每天維修16輛,乙每天維修的車(chē)輛比甲多8輛,甲單獨(dú)維修完成這批共享單車(chē)比乙單獨(dú)維修完多用20天,公司每天付甲80元維修費(fèi),付乙120元維修費(fèi).
(1)問(wèn)需要維修的這批共享單車(chē)共有多少輛?
(2)在維修過(guò)程中,公司要派一名人員進(jìn)行質(zhì)量監(jiān)督,公司負(fù)擔(dān)他每天10元補(bǔ)助費(fèi),現(xiàn)有三種維修方案:①由甲單獨(dú)維修;
②由乙單獨(dú)維修;
③甲、乙合作同時(shí)維修,你認(rèn)為哪種方案最省錢(qián),為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AD是BC邊上的高,AE是角平分線,∠B=30°,∠C=70°,求∠CAD和∠DAE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com