分析 (1)利用旋轉(zhuǎn)的性質(zhì)得AC=BC,∠BCA=60°,則可判斷△ABC為等邊三角形,過點(diǎn)E做EG∥AC交BC于點(diǎn)G,如圖,則△EBG為等邊三角形,所以EG=BE=BG,∠EBG=∠EGB=60°,則∠EBD=∠EGC=120°,接下來證明△BDE≌△GCE得到BD=GC,然后利用等線段代換可得到AE=DB;
(2)利用BD=AE,BE=BC=CE=EF等線段代換易得四對線段,使每對線段長度之和等于AB的長.
解答 解:(1)∵△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△ACF,
∴AC=BC,∠BCA=60°,
∴△ABC為等邊三角形,
過點(diǎn)E做EG∥AC交BC于點(diǎn)G,如圖,
∴△EBG為等邊三角形,
∴EG=BE=BG,∠EBG=∠EGB=60°,
∴∠EBD=∠EGC=120°,
∵ED=EC
∴∠D=∠ECD,
在△BDE和△GCE中
$\left\{\begin{array}{l}{∠EBD=∠EGC}\\{∠D=∠GCE}\\{ED=EC}\end{array}\right.$,
∴△BDE≌△GCE,
∴BD=GC,
∵△ABC為等邊三角形,
∴AB=BC,
∴AB-BE=BC-BG,
∴AE=CG,
∴AE=DB;
(2)AE+BE=AB;BD+BE=AB;AE+AF=AB;BD+AF=AB.
點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的判定與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3.5 | B. | 5 | C. | 5.5 | D. | 4.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com