精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線y=-2x+4x軸和y軸于點A和點B,C(0,-2)在y軸上,連接AC。

(1)求點A和點B的坐標;

(2)若點P是直線AB上一點,若△APC的面積為4,求點P;

(3)過點B的直線BHx軸于點H(H點在點A右側),當∠ABE=45時,求直線BE。

【答案】(1)A(2,0),B(0,4)(2)(,),(,-)(3)

【解析】

(1)根據x軸上的點的縱坐標為0,y軸上的點的橫坐標為0即可求出點A、B的坐標;(2)分三種情況,當點P在x軸上方(即在點A、B之間)時當點P在x軸下方時進行計算;因為=4,所以點P不會在點B的上方;(3)過點A作ADAB交BE于點D,過點D作DHX軸 ,由∠ABE=45

可得△BAD為等腰直角三角形,易證△AOB≌△DHA ,又因為OA=2,OB=4所以OH=4,DH=2,所以D(6,2),已知B(0,4) ,利用待定系數法可得 .

(1)∵y=-2x+4交X軸和y軸于點A和點B

∴當x=0時,y=4;

當y=0時,x=2

∴A(2,0),B(0,4)

(2) 設點P(a,-2a+4)

①如圖,當點P在x軸上方時,

∴4=

∴a=

(,)

②如圖,當點P在x軸下方時

∴4=

∴a=

(,-)

③因為=4,所以點P不會在點B的上方;

(3)當∠ABE=45,設直線BE:y=kx+b

如圖, 過點A作AD⊥AB交BE于點D,過點D作DH⊥X軸

∵∠ABE=45

∴△BAD為等腰直角三角形,

易證△AOB≌△DHA

∵OA=2,OB=4

∴OH=4,DH=2

∴D(6,2)

∵B(0,4)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀下面材料,并解答下列問題:

在形如ab=N的式子中,我們已經研究過兩種情況:

①已知ab,求N,這是乘方運算;

②已知bN,求a,這是開方運算.

現在我們研究第三種情況:已知aN,求b,我們把這種運算叫作對數運算.

定義:如果ab=N(a>0.a≠1,N>0),則b叫作以a為底的N的對數,記作b=logaN.

例如:因為23=8,所以log28=3;因為,所以

(1)根據定義計算:

log381=   ; log33=   ;

log31=   ④如果logx16=4,那么x=   

(2)設ax=M,ay=N,則logaN=y(a>0,a≠1,M、N均為正數).用logaM,logaN的代數式分別表示logaMN,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知反比例函數y=與一次函數y=x+b的圖象交于A(1,-k+4),B(k-4,-1)兩點.

(1)試確定這兩個函數的表達式;

(2)根據圖象寫出使反比例函數的值大于一次函數的值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學活動課上,老師準備了若干個如圖1的三種紙片,A種紙片是邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片是長為a、寬為b的長方形。用A種紙片張,B種紙片一張,C種紙片兩張可拼成如圖2的大正方形.

1)請用兩種不同的方法求圖2大正方形的面積(答案直接填寫到題中橫線上);

方法1____________;方法2_____________;

2)觀察圖2,請你直接寫出下列三個代數式: (a+b), a+b,ab之間的等量關系_____________;

3)類似的,請你用圖1中的三種紙片拼一個圖形驗證:(a+b)(a+2b)=a+3ab+2b

4)根據(2)題中的等量關系,解決如下問題:

①已知:a+b=6, a+b=14,求ab的值;

②已知(x2018)+(x2020)=34,(x2019)的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩車從A地勻速駛向B地,甲車比乙車早出發(fā)2小時,并且甲車圖中休息了0.5小時后仍以原速度駛向B地,如圖是甲、乙兩車行駛的路程y(千米)與行駛的時間x(小時)之間的函數圖象.下列說法:

m1,a40;

②甲車的速度是40千米/小時,乙車的速度是80千米/小時;

③當甲車距離A260千米時,甲車所用的時間為7小時;

④當兩車相距20千米時,則乙車行駛了34小時,

其中正確的個數是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,一次函數y=x+m的圖象交y軸于點D,且它與正比例函數的圖象交于點A2,n),設x軸上有一點P,過點Px軸的垂線(垂線位于點A的右側),分別交y=x+m的圖象與點B、C.

1)求mn的值;

2)若BC=OD,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在菱形中,為邊的中點,與對角線交于點,過于點

,求的長;

求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形中,,,點上,,過點,交,點從點出發(fā)以個單位的速度沿著線段向終點運動,同時點從點出發(fā)也以個單位的速度沿著線段向終點運動,設運動時間為

填空:當時,________

平分時,直線將菱形的周長分成兩部分,求這兩部分的比;

為圓心,長為半徑的是否能與直線相切?如果能,求此時的值;如果不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明和幾位同學做手的影子游戲時,發(fā)現對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

如圖,垂直于地面放置的正方形框架,邊長,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子,的長度和為.那么燈泡離地面的高度為________.

不改變圖中燈泡的高度,將兩個邊長為的正方形框架按圖擺放,請計算此時橫向影子,的長度和為多少?

個邊長為的正方形按圖擺放,測得橫向影子的長度和為,求燈泡離地面的距離.(寫出解題過程,結果用含,的代數式表示)

查看答案和解析>>

同步練習冊答案