【題目】如圖,直線軸交于點,拋物線軸的一個交點為(在點的左側),過點垂直軸交直線于點

1)求拋物線的函數(shù)表達式;

2)將繞點順時針旋轉,點的對應點分別為點

①求點的坐標;

②將拋物線向右平移使它經過點,此時得到的拋物線記為,求出拋物線的函數(shù)表達式.

【答案】1;(2)①F;②

【解析】

1)由點B的坐標,利用待定系數(shù)法即可求出b的值,從而求得拋物線的函數(shù)表達式;
2)利用一次函數(shù)圖象上點的坐標特征可得出點A、點D的坐標,進而可得出BDAB的值.
①依照題意畫出圖形,由EFBD2,OFAEAB1可得出點Fy軸正半軸上,進而可求出點F的坐標;
②利用配方程法將拋物線C1的表達式變形為頂點式,根據平移的性質可設拋物線C2的表達式為y=(xm21,由點F的坐標,利用待定系數(shù)法即可求出拋物線C2的表達式,此題得解.

把點代入,

得:,解得,

拋物線的函數(shù)表達式為;

軸交于點

,

時,

的坐標為,

①依照題意畫出圖形,

,

的坐標為

軸正半軸上,

的坐標為,

,

設平移后得到的拋物線的表達式為

代入,

得:

解得:,

拋物線的表達式為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】開學初期,天氣炎熱,水杯需求量大.雙福育才中學門口某超市購進一批水杯,其中A種水杯進價為每個15元,售價為每個25元;B種水杯進價為每個12元,售價為每個20

1)該超市平均每天可售出60A種水杯,后來經過市場調查發(fā)現(xiàn),A種水杯單價每降低1元,則平均每天的銷量可增加10個.為了盡量讓學生得到更多的優(yōu)惠,某天該超市將A種水杯售價調整為每個m元,結果當天銷售A種水杯獲利630元,求m的值.

2)該超市準備花費不超過1600元的資金,購進AB兩種水杯共120個,其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請為該超市設計獲利最大的進貨方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點MCD的邊上,且DM=1,ΔAEMΔADM關于AM所在的直線對稱,將ΔADM按順時針方向繞點A旋轉90°得到ΔABF,連接EF,則線段EF的長為(

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了創(chuàng)建國家級衛(wèi)生城區(qū),某社區(qū)在九月份購買了甲、乙兩種綠色植物共1100盆,共花費了27000元.已知甲種綠色植物每盆20元,乙種綠色植物每盆30元.

1)該社區(qū)九月份購買甲、乙兩種綠色植物各多少盆?

2)十月份,該社區(qū)決定再次購買甲、兩種綠色植物.已知十月份甲種綠色植物每盆的價格比九月份的價格優(yōu)惠,十月份乙種綠色植物每盆的價格比九月份的價格優(yōu)惠.因創(chuàng)衛(wèi)需要,該社區(qū)十月份購買甲種綠色植物的數(shù)量比九月份的數(shù)量增加了,十為份購買乙種綠色植物的數(shù)量比九月份的數(shù)量增加了.若該社區(qū)十月份的總花費與九月份的總花費恰好相同,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交xy軸于點A、B,拋物線經過點AB,點P為第四象限內拋物線上的一個動點.

1)求此拋物線對應的函數(shù)表達式;

2)如圖1所示,過點PPM∥y軸,分別交直線ABx軸于點C、D,若以點PB、C為頂點的三角形與以點AC、D為頂點的三角形相似,求點P的坐標;

3)如圖2所示,過點PPQ⊥AB于點Q,連接PB,當△PBQ中有某個角的度數(shù)等于∠OAB度數(shù)的2倍時,請直接寫出點P的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(感知)“如圖①,,平分,作,、分別交射線、、兩點,連結,求的度數(shù)”為了求解問題,某同學做了如下的分析,

“過點于點,于點,”進而求解,則________

(拓展)如圖②,一般地,設,平分,作,分別交射線、兩點,連結

1)求的度數(shù).(用含的代數(shù)式表示)

2)若,,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于兩點,與軸交于點.

(1)的值;

(2)請直接寫出不等式的解集;

(3)軸下方的圖像沿軸翻折,點落在點處,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.

請結合以上信息解答下列問題:

(1)m= ;

(2)請補全上面的條形統(tǒng)計圖;

(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為

(4)已知該校共有1200名學生,請你估計該校約有 名學生最喜愛足球活動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個結論:①4ac﹣b20;②4a+c2b③3b+2c0;④mam+b+bam≠﹣1),其中正確結論的個數(shù)是( )

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案