在圓內(nèi)接四邊形ABCD中,CD為∠BCA外角的平分線,F(xiàn)為弧AD上一點,BC=AF,延長DF與BA的延長線交于E.
⑴求證△ABD為等腰三角形.
⑵求證AC•AF=DF•FE
⑴由圓的性質(zhì)知∠MCD=∠DAB、∠DCA=∠DBA,而∠MCD=∠DCA,所以∠DBA=∠DAB,故△ABD為等腰三角形.
⑵∵∠DBA=∠DAB
∴弧AD=弧BD
又∵BC=AF
∴弧BC=弧AF、∠CDB=∠FDA
∴弧CD=弧DF
∴CD=DF
再由“圓的內(nèi)接四邊形外角等于它的內(nèi)對角”知
∠AFE=∠DBA=∠DCA①,∠FAE=∠BDE
∴∠CDA=∠CDB+∠BDA=∠FDA+∠BDA=∠BDE=∠FAE②  由①②得△DCA∽△FAE
∴AC:FE=CD:AF
∴AC•AF=" CD" •FE
而CD=DF,
∴AC•AF=DF•FE
解決此題關(guān)鍵要用到與圓相關(guān)的性質(zhì)、定理以及三角形相似的判定,等角對等邊。
有一定的幾何知識的綜合性?疾閷W(xué)生審圖,分析圖中邊角關(guān)系的解題技能。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題9分)如圖,△ABC是直角三角形,∠ACB=90°.
(1)實踐與操作利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法).
①作△ABC的外接圓,圓心為O;
②以線段AC為一邊,在AC的右側(cè)作等邊△ACD;
③連接BD,交⊙O于點F,連接AE,
(2)綜合與運用 在你所作的圖中,若AB=4,BC=2,則:
①AD與⊙O的位置關(guān)系是______.(2分)
②線段AE的長為__________.(2分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分,第(1)小題滿分4分,第(2)小題滿分6分)如圖5,點CD分別在扇形AOB的半徑OA、OB的延長線上,且OA=3,AC=2,CD平行于AB,并與弧AB相交于點M、N
(1)求線段OD的長;
(2)若,求弦MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=40°,∠APD=65°。

(1)求∠B的大。
(2)已知圓心0到BD的距離為3,求AD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)如圖,在銳角△ABC中,AC是最短邊;以AC中點O為圓心,AC長為半徑作O,BCE,過OODBC交⊙OD,連結(jié)AE、AD、DC
(1)求證:D是 弧AE 的中點;
(2)求證:∠DAO =∠B+∠BAD;
(3)若 ,且AC=4,求CF的長.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖7:⊙O的直徑為10cm,弦AB為8cm,P是弦AB上一點,
若OP的長為整數(shù),則滿足條件的點P有         個。

圖7                                            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB為圓O的直徑,弦CD^AB,垂足為點E,聯(lián)結(jié)OC,若OC=5,AE=2,則CD等于
A.3B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

.已知內(nèi)切,若的半徑為3cm,的半徑為6cm,那么兩圓的圓心距
的長是        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓的半徑分別為3cm和5cm,如果它們的圓心距是10cm,那么這兩個圓的位置關(guān)系是
A.內(nèi)切B.相交C.外切D.外離

查看答案和解析>>

同步練習(xí)冊答案