【題目】在“元旦”期間,七(1)班小明,小亮等同學(xué)隨家長(zhǎng)一同到某公園游玩,下面是購(gòu)買(mǎi)門(mén)票時(shí),小明與他爸爸的對(duì)話(如圖),試根據(jù)圖中的信息,解答下列問(wèn)題:
(1)小明他們一共去了幾個(gè)成人,幾個(gè)學(xué)生?
(2)請(qǐng)你幫助小明算一算,用哪種方式購(gòu)票省錢(qián)?請(qǐng)說(shuō)明理由.
(3)正要購(gòu)票時(shí),小明發(fā)現(xiàn)七(2)班的小張等10名同學(xué)和他們的7名家長(zhǎng)共17人也來(lái)購(gòu)票,為了節(jié)省費(fèi)用,經(jīng)協(xié)商,他們決定一起購(gòu)票,請(qǐng)你為他們?cè)O(shè)計(jì)最省錢(qián)的購(gòu)票方案,并求出此時(shí)的費(fèi)用.
【答案】(1)小明他們一共去了8個(gè)成人,4個(gè)學(xué)生(2)購(gòu)買(mǎi)16張團(tuán)體票省錢(qián),詳見(jiàn)解析(3)15個(gè)大人加上一個(gè)學(xué)生購(gòu)買(mǎi)16張團(tuán)體票,剩下的13名學(xué)生購(gòu)買(mǎi)13張學(xué)生票,此時(shí)共需644元
【解析】
(1)設(shè)成人人數(shù)為x人,則學(xué)生人數(shù)為(12x)人,由題中所給的票價(jià)單可得出關(guān)于x的一元一次方程,解此方程即可得出成人與學(xué)生各有多少人數(shù);
(2)已知購(gòu)個(gè)人票的價(jià)錢(qián),再算出購(gòu)團(tuán)體票的價(jià)錢(qián),哪個(gè)更低哪個(gè)就更省錢(qián);
(3)分三種情況討論,再把價(jià)錢(qián)比較,即可得最省的購(gòu)票方案.
解:(1)設(shè)小明他們一共去了個(gè)成人,則去了個(gè)學(xué)生,
根據(jù)題意得:,
解得:,
∴
答:小明他們一共去了8個(gè)成人,4個(gè)學(xué)生.
(2)(元),
384元400元,
答:購(gòu)買(mǎi)16張團(tuán)體票省錢(qián).
(3)①(元)
②(元),
③(元)
答:15個(gè)大人加上一個(gè)學(xué)生購(gòu)買(mǎi)16張團(tuán)體票,剩下的13名學(xué)生購(gòu)買(mǎi)13張學(xué)生票,此時(shí)共需644元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”.小明是這樣思考的:由函數(shù)y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
(1)請(qǐng)參考小明的方法寫(xiě)出函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與y=x2﹣3nx+n互為“旋轉(zhuǎn)函數(shù)”,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地計(jì)劃用120~180天(含120與180天)的時(shí)間建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為360萬(wàn)米3.
(1)寫(xiě)出運(yùn)輸公司完成任務(wù)所需的時(shí)間y(單位:天)與平均每天的工作量x(單位:萬(wàn)米3)之間的函數(shù)關(guān)系式.并給出自變量x的取值范圍;
(2)由于工程進(jìn)度的需要,實(shí)際平均每天運(yùn)送土石方比原計(jì)劃多20%,工期比原計(jì)劃減少了24天,原計(jì)劃和實(shí)際平均每天運(yùn)送土石方各是多少萬(wàn)米3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開(kāi)圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).
(1)填空:a= ,b= ,c= ;
(2)先化簡(jiǎn),再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蝸牛從某點(diǎn)開(kāi)始沿一條東西方向的直線爬行,規(guī)定以出發(fā)點(diǎn)為原點(diǎn),向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù),則蝸牛爬過(guò)的各段路程依次為+5,-3,+10,-8,-6,+12,-10.(單位:厘米)
(1)請(qǐng)判斷蝸牛最后是否回到出發(fā)點(diǎn)?
(2)蝸牛離開(kāi)出發(fā)點(diǎn)0最遠(yuǎn)時(shí)是多少厘米?
(3)在爬行過(guò)程中,若蝸牛每爬1厘米就獎(jiǎng)勵(lì)一粒芝麻,則蝸牛一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并解決后面的問(wèn)題.
材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Npler,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evler,1707-1783)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.我們知道,n個(gè)相同的因數(shù)a相乘記為,如,此時(shí),3叫做以2為底8的對(duì)數(shù),記為,即.
一般地,若(且,),則n叫做以a為底b的對(duì)數(shù),記為,即.如,則4叫做以3為底81的對(duì)數(shù),記為,即.
(1)計(jì)算下列各對(duì)數(shù)的值:________,________,________;
(2)通過(guò)觀察(1)中三數(shù)、、之間滿足的關(guān)系式是________;
(3)拓展延伸;下面這個(gè)一般性的結(jié)論成立嗎?我們來(lái)證明
(且,,)
證明:設(shè),,
由對(duì)數(shù)的定義得:,,
∴,
∴,
又∵,,
∴(且,,).
(4)仿照(3)的證明,你能證明下面的一般性結(jié)論嗎?
(且,,).
(5)計(jì)算:的值為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,階梯圖的每個(gè)臺(tái)階上都標(biāo)著一個(gè)數(shù),從下到上的第1個(gè)至第4個(gè)臺(tái)階上依次標(biāo)著﹣5,﹣2,1,9,且任意相鄰四個(gè)臺(tái)階上數(shù)的和都相等.
嘗試 (1)求前4個(gè)臺(tái)階上數(shù)的和是多少?
(2)求第5個(gè)臺(tái)階上的數(shù)x是多少?
應(yīng)用 求從下到上前31個(gè)臺(tái)階上數(shù)的和.
發(fā)現(xiàn) 試用含k(k為正整數(shù))的式子表示出數(shù)“1”所在的臺(tái)階數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實(shí)數(shù)),
(1)當(dāng) k=3 時(shí),求此函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo);
(2)判斷此函數(shù)與 x 軸的交點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)當(dāng)此函數(shù)圖象為拋物線,且頂點(diǎn)在 x 軸下方,頂點(diǎn)到 y 軸的距離為 2,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列證明:如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.
求證: DG∥BA.
證明:∵AD⊥BC,EF⊥BC ( 已知 )
∴∠EFB=90°,∠ADB=90°(_______________________ )
∴∠EFB=∠ADB ( 等量代換 )
∴EF∥AD ( _________________________________ )
∴∠1=∠BAD (________________________________________)
又∵∠1=∠2 ( 已知)
∴ (等量代換)
∴DG∥BA. (__________________________________)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com