精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,∠ACB90°,DAB上一點,過D點作AB垂線,交ACE,交BC的延長線于F

1)∠1與∠B有什么關系?說明理由.

2)若BCBD,請你探索ABFB的數量關系,并且說明理由.

【答案】1)∠1與∠B相等,理由見解析;(2)若BCBD,ABFB相等,理由見解析

【解析】

1)∠ACB=90°,∠1+F=90°,又由于DFAB,∠B+F=90°,繼而可得出∠1=B;
2)通過判定△ABC≌△FBDAAS),可得出AB=FB

解:(1)∠1與∠B相等,

理由:∵,△ABC中,∠ACB90°,

∴∠1+F90°,

FDAB,

∴∠B+F90°,

∴∠1=∠B;

2)若BCBD,ABFB相等,

理由:∵△ABC中,∠ACB90°,DFAB,

∴∠ACB=∠FDB90°,

在△ACB和△FDB中,

,

∴△ACB≌△FDBAAS),

ABFB

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,是等邊三角形,分別是,的中點,且.上一動點,則的最小值為___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】黑白雙雄,縱橫江湖;雙劍合璧,天下無敵,這是武俠小說中的常見描述,其意思是指兩個人合在一起,取長補短,威力無比,在二次根式中也常有這種相輔相成的對子,如:,它們的積中不含根號,我們說這兩個二次根式互為有理化因式,其中一個是另一個的有理化因式,于是,二次根式除法可以這樣解:

.

像這樣通過分子、分母同乘一個式子把分母中的根號化去的方法,叫做分母有理化。

解決問題:

1的有理化因式是 ;

分母有理化得 ;

2)已知:,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A是反比例函數y=圖象上的任意一點,過點A作AB∥x軸,AC∥y軸,分別交反比例函數y=的圖象于點B,C,連接BC,E是BC上一點,連接并延長AE交y軸于點D,連接CD,則SDEC﹣SBEA=_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電視臺走基層欄目的一位記者乘汽車赴360km外的農村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是

A)汽車在高速公路上的行駛速度為100km/h

B)鄉(xiāng)村公路總長為90km

C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D)該記者在出發(fā)后4.5h到達采訪地

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為半圓直徑,、為圓周上兩點,且交于點,則圖中與相等的角有(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數圖象上的一對對稱點,一次函數的圖象過點B、D.

(1)請直接寫出D點的坐標.

(2)求二次函數的解析式.

(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.

(1)求拋物線解析式;

(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△MOA的面積為S.求S關于m的函數關系式,并求出當m為何值時,S有最大值,這個最大值是多少?

(3)若點Q是直線y=﹣x上的動點,過Qy軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ANCBB、NAC同側,BM、CN交于點D,ACBC,且∠A+MDN180°.

1)如圖1,當∠NAC90°,求證:BMCN;

2)如圖2,當∠NAC為銳角時,試判斷BMCN關系并證明;

3)如圖3,在(1)的條件下,且∠MBC30°,一動點E在線段BM上運動過程中,連CE,將線段CE繞點C順時針旋轉90°至CF,取BE中點P,連AP、FP.設四邊形APFC面積為S,若AM1MC1,在E點運動過程中,請寫出S的取值范圍   

查看答案和解析>>

同步練習冊答案