【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,過D點作AB垂線,交AC于E,交BC的延長線于F.
(1)∠1與∠B有什么關系?說明理由.
(2)若BC=BD,請你探索AB與FB的數量關系,并且說明理由.
【答案】(1)∠1與∠B相等,理由見解析;(2)若BC=BD,AB與FB相等,理由見解析
【解析】
(1)∠ACB=90°,∠1+∠F=90°,又由于DF⊥AB,∠B+∠F=90°,繼而可得出∠1=∠B;
(2)通過判定△ABC≌△FBD(AAS),可得出AB=FB.
解:(1)∠1與∠B相等,
理由:∵,△ABC中,∠ACB=90°,
∴∠1+∠F=90°,
∵FD⊥AB,
∴∠B+∠F=90°,
∴∠1=∠B;
(2)若BC=BD,AB與FB相等,
理由:∵△ABC中,∠ACB=90°,DF⊥AB,
∴∠ACB=∠FDB=90°,
在△ACB和△FDB中,
,
∴△ACB≌△FDB(AAS),
∴AB=FB.
科目:初中數學 來源: 題型:
【題目】黑白雙雄,縱橫江湖;雙劍合璧,天下無敵,這是武俠小說中的常見描述,其意思是指兩個人合在一起,取長補短,威力無比,在二次根式中也常有這種相輔相成的“對子”,如:,它們的積中不含根號,我們說這兩個二次根式互為有理化因式,其中一個是另一個的有理化因式,于是,二次根式除法可以這樣解:
.
像這樣通過分子、分母同乘一個式子把分母中的根號化去的方法,叫做分母有理化。
解決問題:
(1)的有理化因式是 ;
將分母有理化得 ;
(2)已知:,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是反比例函數y=圖象上的任意一點,過點A作AB∥x軸,AC∥y軸,分別交反比例函數y=的圖象于點B,C,連接BC,E是BC上一點,連接并延長AE交y軸于點D,連接CD,則S△DEC﹣S△BEA=_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺“走基層”欄目的一位記者乘汽車赴360km外的農村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是【 】
(A)汽車在高速公路上的行駛速度為100km/h
(B)鄉(xiāng)村公路總長為90km
(C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h
(D)該記者在出發(fā)后4.5h到達采訪地
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數圖象上的一對對稱點,一次函數的圖象過點B、D.
(1)請直接寫出D點的坐標.
(2)求二次函數的解析式.
(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△MOA的面積為S.求S關于m的函數關系式,并求出當m為何值時,S有最大值,這個最大值是多少?
(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AN∥CB,B、N在AC同側,BM、CN交于點D,AC=BC,且∠A+∠MDN=180°.
(1)如圖1,當∠NAC=90°,求證:BM=CN;
(2)如圖2,當∠NAC為銳角時,試判斷BM與CN關系并證明;
(3)如圖3,在(1)的條件下,且∠MBC=30°,一動點E在線段BM上運動過程中,連CE,將線段CE繞點C順時針旋轉90°至CF,取BE中點P,連AP、FP.設四邊形APFC面積為S,若AM=﹣1,MC=1,在E點運動過程中,請寫出S的取值范圍 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com