如圖,等圓⊙O1和⊙O2相交于A、B兩點,⊙O2經(jīng)過⊙O1的圓心O1,兩圓的連心線交⊙O1于點M,交AB于點N,連結(jié)BM,已知AB=2。
(1)求證:BM是⊙O2的切線;
(2)求的長。
解:如圖,連結(jié),
∵⊙O1和⊙O2是等圓,且O1在⊙O2上,
∴點O2也在⊙O1上,
∵O1O2是兩圓的連心線,
∴MO2是⊙O1的直徑,
∴∠MBO2=90°,
又∵直線BM經(jīng)過半徑的O2B的外端,
∴直線BM是⊙O2的切線;
(2)連結(jié)O1A、O1B,
∵點B既在⊙O1上,又在⊙O2上,
∴O1O2=O1B=O2B,
∴∠NO1B=60°,
∵O1O2是兩圓的連心線,
∴O1O2⊥AB,BN=
在Rt△NO1B中,sin60°=,O1B=2,
∵O1M=O1B,
∴∠O1MB =∠O1BM=∠BO1N =×60°=30°,
∴在Rt△MBN中,∠MBN= 60°,
∴∠MO1A=120°,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等圓⊙O1和⊙O2相交于A,B兩點,⊙O2經(jīng)過⊙O1的圓心O1,兩圓的連心線交⊙O1于點M,交AB精英家教網(wǎng)于點N,連接BM,已知AB=2
3

(1)求證:BM是⊙O2的切線;
(2)求
AM
的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂林)如圖,等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經(jīng)過⊙O2的圓心,順次連接A、O1、B、O2
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州模擬)如圖:等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經(jīng)過⊙O2的圓心,順次連接A、O1、B、O2
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2DO2;
(3)在(2)的條件下,若S △AO2D=1,求S O2DB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(廣西桂林卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經(jīng)過⊙O2的圓心,順次連接
A、O1、B、O2

(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆廣西桂林市初中畢業(yè)升學(xué)模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖:等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經(jīng)過⊙O2的圓心,順次連接A、O1、B、O2

(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2DO2;
(3)在(2)的條件下,若,求的值.

查看答案和解析>>

同步練習(xí)冊答案