【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD于點Q,PQ=3,PE=1.
(1)求證:AD=BE;
(2)求AD的長.
【答案】
(1)證明:∵△ABC為等邊三角形,
∴AB=CA=BC,∠BAE=∠ACD=60°;
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴AD=BE
(2)解:∵△ABE≌△CAD,
∴∠CAD=∠ABE,
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,
∴∠PBQ=90°﹣60°=30°,
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6,
又∵PE=1,
∴AD=BE=BP+PE=6+1=7
【解析】(1)根據(jù)等邊三角形的三條邊都相等可得AB=CA,每一個角都是60°可得,∠BAE=∠ACD=60°,然后利用“邊角邊”證明△ABE和△CAD全等,根據(jù)全等三角形對應邊相等證明即可;(2)根據(jù)全等三角形對應角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根據(jù)直角三角形兩銳角互余求出∠PBQ=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出BP=2PQ,再根據(jù)AD=BE=BP+PE代入數(shù)據(jù)進行計算即可得解.
【考點精析】認真審題,首先需要了解等邊三角形的性質(等邊三角形的三個角都相等并且每個角都是60°),還要掌握含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】我校對全部900名學生就校園安全知識的了解程度,采用隨機抽樣調查的方式進行調查,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有____人,條形統(tǒng)計圖中“了解”部分所對應的人數(shù)是____人;
(2) 扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(3)若沒有達到“了解”或“基本了解”的同學必須重新接受安全教育。請根據(jù)上述調查結果估計我校學生中必須重新接受安全教育的總人數(shù)大約為________人;
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校安全知識競賽,請直接寫出恰好抽到1個男生和1個女生的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】不透明袋子中有除顏色外完全相同的4個黑球和2個白球,從袋子中隨機摸出3個球,下列事件是必然事件的是( ).
A. 3個都是黑球B. 2個黑球1個白球
C. 2個白球1個黑球D. 至少有1個黑球
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要得到AB∥CD,只需要添加一個條件,這個條件不可以是( 。
A.∠1=∠3
B.∠B+∠BCD=180°
C.∠2=∠4
D.∠D+∠BAD=180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com