【題目】已知,正方形ABCD的邊長為4,點E是對角線BD延長線上一點,AE=BD.將△ABE繞點A順時針旋轉(zhuǎn)α度(0°<α<360°)得到△AB′E′,點B、E的對應(yīng)點分別為B′、E′.
(1)如圖1,當α=30°時,求證:B′C=DE;
(2)連接B′E、DE′,當B′E=DE′時,請用圖2求α的值;
(3)如圖3,點P為AB的中點,點Q為線段B′E′上任意一點,試探究,在此旋轉(zhuǎn)過程中,線段PQ長度的取值范圍為 .
【答案】(1)證明見解析(2)45°(3)≤PQ≤4+2
【解析】試題分析:(1)、連接AC,B′C,根據(jù)正方形的性質(zhì)得出得出AC=AE=2OA,根據(jù)Rt△AOE的性質(zhì)得出∠E=30°,然后結(jié)合旋轉(zhuǎn)圖形的性質(zhì)得出△ADE和△AB′C全等,從而得出答案;(2)、根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出△AEB′和△AE′D全等,從而得出∠DAE′=∠EAB′,然后結(jié)合旋轉(zhuǎn)圖形的性質(zhì)得出∠EAE′=∠BAB′,從而得到∠BAB′=∠DAB′,最后根據(jù)∠BAB′+∠DAB′=90°得出答案;(3)、點P作PM⊥BE,∵AB=4,點P是AB中點,根據(jù)BP=2得出PM=;在旋轉(zhuǎn)過程中,△ABE在旋轉(zhuǎn)到點E在BA的延長線時,點Q和點E重合,然后求出PQ的長度,從而得出取值范圍.
試題解析:(1)如圖,連接AC,B′C, ∵四邊形ABCD是正方形,
∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°, ∵AE=BD, ∴AC=AE=2OA,
在Rt△AOE中,∠AOE=90°,AE=2OA, ∴∠E=30°,
∴∠DAE=∠ADB﹣∠E=45°﹣30°=15°, 由旋轉(zhuǎn)有,AD=AB=AB′∠BAB′=30°
∴∠DAE=15°,
在△ADE和△AB′C中, , ∴△ADE≌△AB′C,∴DE=B′C,
(2)如圖,
由旋轉(zhuǎn)得,AB′=AB=AD,AE′=AE,
在△AEB′和△AE′D中, ,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,
∴∠EAE′=∠DAB′,由旋轉(zhuǎn)得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,
∵∠BAB′+∠DAB′=90°,∴α=∠BAB′=45°,
(3)如圖,由點到直線的距離,過點P作PM⊥BE,∵AB=4,點P是AB中點,
∴BP=2,∴PM= ,
在旋轉(zhuǎn)過程中,△ABE在旋轉(zhuǎn)到點E在BA的延長線時,點Q和點E重合,
∴AQ=AE=BQ=4 ∴PQ=AQ+AP=4+2,
故答案為≤PQ≤4+2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等腰中,點分別在腰上,連結(jié),若,則稱為該等腰三角形的逆等線.
(1)如圖1,是等腰的逆等線,若,求逆等線的長;
(2)如圖2,若直角的直角頂點恰好為等腰直角底邊上的中點,且點分別在上,求證:為等腰的逆等線;
(3)如圖3,等腰的頂點與原點重合,底邊在軸上,反比例函數(shù)的圖象交于點,若恰為的逆等線,過點分別作軸于點軸于點,已知,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩射擊運動員10次射擊成績的折線統(tǒng)計圖,那么根據(jù)圖中的信息估計,擊中10環(huán)可能性更大的是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出點C2的坐標;
(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種對正整數(shù)n的“F運算”:①當n為奇數(shù)時,結(jié)果為3n+5;②當n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運算重復進行.例如:取n=26,則運算過程如圖:
那么當n=9時,第2019次“F運算”的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解本校九年級學生足球訓練情況,隨機抽查該年級若干名學生進行測試,然后把測試結(jié)果分為4個等級:A、B、C、D,并將統(tǒng)計結(jié)果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息解答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了 名學生,扇形統(tǒng)計圖中,C等級對應(yīng)的扇形圓心角是 °.
(2)補全條形統(tǒng)計圖.
(3)該年級共有900人,估計該年級足球測試成績?yōu)?/span>D等的人數(shù)為 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】機械表是日常生活中常見的一類鐘表,與電子表不同,機械表受環(huán)境、機芯等因素的影響常會產(chǎn)生走時誤差.現(xiàn)為了比較市場上甲、乙兩款機械表的精準度,從兩款表中,各隨機抽取一塊進行每日走時誤差的檢測,連續(xù)檢測10天,兩款表每日走時誤差的統(tǒng)計數(shù)據(jù)如圖(單位:秒):
(1)甲、乙兩種機械表的平均走時誤差分別是多少?
(2)小明現(xiàn)計劃購買一塊機械表,如果僅從走時的準確度考慮,你會推薦他購買甲、乙哪一種,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,△ABC中,∠ACB=90°,CD⊥AB于D,E為BC中點,CF⊥AE于F.
(1)求證:4CE2=BDAB;
(2)若2∠DCF=∠ECF,求cos∠ECF的值;
(3)如圖2,DF延長線交BC于G,若AC=BC,EG=1,則DG= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周長.
(2)若∠DBC=45°,對角線AC、BD交于點O,F為AE上一點,且AF=2EO,求證:CF=AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com