【題目】如圖,△ABC中∠A=30°,E是AC邊上的點,先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點D,又將△BCD沿著BD翻折,C點恰好落在BE上,此時∠CDB=82°,則原三角形的∠B為( )
A.75°
B.76°
C.77°
D.78°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的三邊長分別是3,8,x,若x的值是偶數(shù),則x值的個數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有五種說法:①﹣a表示負(fù)數(shù);②絕對值最小的有理數(shù)是0;③3×102x2y是5次單項式;④ 是多項式.其中正確的是( )
A.①③
B.②④
C.②③
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D,E.
證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D,A,E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D,E是D,A,E三點所在直線m上的兩動點(D,A, E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2,P是AC上的一個動點.
(1)當(dāng)點P運動到∠ABC的平分線上時,連接DP,求DP的長;
(2)當(dāng)點P在運動過程中出現(xiàn)PD=BC時,求此時∠PDA的度數(shù);
(3)當(dāng)點P運動到什么位置時,以D,P,B,Q為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時□DPBQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為響應(yīng)國家“退耕還林”的號召,改變水土流失嚴(yán)重現(xiàn)狀,2016年某地區(qū)退耕還林1200畝,計劃2018年退耕還林1728畝.求這兩年平均每年退耕還林的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成證明,說明理由. 已知:如圖,點D在BC邊上,DE、AB交于點F,AC∥DE,∠1=∠2,∠3=∠4.
求證:AE∥BC.
證明:∵AC∥DE(已知),
∴∠4=()
∵∠3=∠4(已知),
∴∠3=()
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD()
即∠FAC=∠EAD,
∴∠3= .
∴AE∥BC()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學(xué)記數(shù)法表示為( 。
A. 8.23×10﹣6 B. 8.23×10﹣7 C. 8.23×106 D. 8.23×107
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com