【題目】如圖,拋物線與軸交于點(diǎn),與軸交于、兩點(diǎn),其中、是方程的兩根,且

)求拋物線的解析式;

)直線上是否存在點(diǎn),使為直角三角形.若存在,求所有點(diǎn)坐標(biāo);反之說(shuō)理;

)點(diǎn)軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)除外),連、,若設(shè)的面積為 點(diǎn)橫坐標(biāo)為,則在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)有且只有個(gè).

【答案】;(;(3.

【解析】試題分析:(1)解方程求得拋物線與x軸交點(diǎn)的橫坐標(biāo),再用待定系數(shù)法求拋物線的解析式即可;(2用待定系數(shù)法求得直線AC的解析式,再分①∠DBC=90°、②∠DBC=90°兩種情況求點(diǎn)D的坐標(biāo)即可;(3)求得點(diǎn)P在拋物線AB段上時(shí)S的最大值,再求得點(diǎn)P在拋物線AC段上時(shí),S的最大值,即可得S的取值范圍.

試題解析:

,

設(shè),

代入得,

解得

)設(shè)直線AC的解析式為y=kx+b,將A、C兩點(diǎn)坐標(biāo)代入得,

,

解得 ,k=,b=4 ,

∠BDC=90°時(shí),

,

②∠DBC=90°時(shí)x=-2,y=-×-2+4=5,則D點(diǎn)坐標(biāo)為(-2,5);

,

(3)點(diǎn)P在拋物線AC段上時(shí)S最大值為16,點(diǎn)P在拋物線AB段上時(shí)S最大值為20,

S的取值范圍為16<S<20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,,點(diǎn)邊的中點(diǎn),點(diǎn)邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),延長(zhǎng)交射線于點(diǎn),連接

1)求證:四邊形是平行四邊形;

2)填空:

①當(dāng)的值為_______時(shí),四邊形是矩形;

②當(dāng)的值為______時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的海岸線上有、兩個(gè)觀測(cè)站,的正東方向,(單位:)有一艘小船在點(diǎn)處,從測(cè)得小船在北偏西的方向,從測(cè)得小船在北偏東的方向(結(jié)果保留根號(hào))

(1)求點(diǎn)到海岸線的距離;

(2)小船從點(diǎn)處沿射線的方向航行一段時(shí)間后,到達(dá)點(diǎn)處,此時(shí),從測(cè)得小船在北偏西的方向,求點(diǎn)與點(diǎn)之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一副直角三角板(角度分別為30°、60°、90°和45°、45°、90°),如圖(1)所示,其中一塊三角板的直角邊AC垂直于數(shù)軸,AC的中點(diǎn)過(guò)數(shù)軸原點(diǎn)O,AC=8,斜邊AB交數(shù)軸于點(diǎn)G,點(diǎn)G對(duì)應(yīng)數(shù)軸上的數(shù)是4;另一塊三角板的直角邊AE交數(shù)軸于點(diǎn)F,斜邊AD交數(shù)軸于點(diǎn)H.

(1)如果△AGH的面積是10,△AHF的面積是8,則點(diǎn)F對(duì)應(yīng)的數(shù)軸上的數(shù)是 ,點(diǎn)H對(duì)應(yīng)的數(shù)軸上的數(shù)是

(2)如圖(2),設(shè)∠AHF的平分線和∠AGH的平分線交于點(diǎn)M,若∠HAO=a,試用a來(lái)表示∠M的大。海▽懗鐾评磉^(guò)程)

(3)如圖(2),設(shè)∠AHF的平分線和∠AGH的平分線交于點(diǎn)M,設(shè)∠EFH的平分線和

∠FOC的平分線交于點(diǎn)N,求∠N+∠M的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,BE平分∠ABC,交AD于點(diǎn)E、FBC上一點(diǎn),且CF=AE,連接DF

1)求證:四邊形BEDF是平行四邊形;

2)若∠ABC=70°,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,,試回答下列問(wèn)題:

1)如圖1所示,求證:.

2)如圖2,若點(diǎn)、上,且滿足,并且平分.求________度.

3)在(2)的條件下,若平行移動(dòng),如圖3,那么的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值.

4)在(2)的條件下,如果平行移動(dòng)的過(guò)程中,若使,求度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu).經(jīng)調(diào)查:購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備多花萬(wàn)元,購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備少花萬(wàn)元.

1)求甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格;

2)該公司經(jīng)決定購(gòu)買甲型設(shè)備不少于臺(tái),預(yù)算購(gòu)買節(jié)省能源的新設(shè)備資金不超過(guò)萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買方案;

3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)請(qǐng)用直尺、圓規(guī)作圖,不寫作法,但要保留作圖痕跡.

已知:如圖,∠ABC,射線BC上一點(diǎn)D

求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等;

2)在(1)的條件下,若∠ABC60°,求等腰三角形△PBD頂角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案