【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過(guò)點(diǎn)A(不經(jīng)過(guò)點(diǎn)B或點(diǎn)C),點(diǎn)C關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接BD,CD.
(1)如圖1,
①求證:點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上;
②直接寫(xiě)出∠BDC的度數(shù)(用含α的式子表示)為 ;
(2)如圖2,當(dāng)α=60°時(shí),過(guò)點(diǎn)D作BD的垂線與直線l交于點(diǎn)E,求證:AE=BD;
(3)如圖3,當(dāng)α=90°時(shí),記直線l與CD的交點(diǎn)為F,連接BF.將直線l繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,在什么情況下線段BF的長(zhǎng)取得最大值?若AC=2a,試寫(xiě)出此時(shí)BF的值.
【答案】(1)①詳見(jiàn)解析;②α;(2)詳見(jiàn)解析;(3)當(dāng)B、O、F三點(diǎn)共線時(shí)BF最長(zhǎng),(+)a
【解析】
(1)①由線段垂直平分線的性質(zhì)可得AD=AC=AB,即可證點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上;
②由等腰三角形的性質(zhì)可得∠BAC=2∠BDC,可求∠BDC的度數(shù);
(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據(jù)“SAS”可證△BCD≌△ACE,可得AE=BD;
(3)取AC的中點(diǎn)O,連接OB,OF,BF,由三角形的三邊關(guān)系可得,當(dāng)點(diǎn)O,點(diǎn)B,點(diǎn)F三點(diǎn)共線時(shí),BF最長(zhǎng),根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求,,即可求得BF
(1)①連接AD,如圖1.
∵點(diǎn)C與點(diǎn)D關(guān)于直線l對(duì)稱(chēng),
∴AC = AD.
∵AB= AC,
∴AB= AC = AD.
∴點(diǎn)B,C,D在以A為圓心,AB為半徑的圓上.
②∵AD=AB=AC,
∴∠ADB=∠ABD,∠ADC=∠ACD,
∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,
∴∠BAM=2∠ADB,∠MAC=2∠ADC,
∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α
∴∠BDC=α
故答案為:α.
(2連接CE,如圖2.
∵∠BAC=60°,AB=AC,
∴△ABC是等邊三角形,
∴BC=AC,∠ACB=60°,
∵∠BDC=α,
∴∠BDC=30°,
∵BD⊥DE,
∴∠CDE=60°,
∵點(diǎn)C關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,
∴DE=CE,且∠CDE=60°
∴△CDE是等邊三角形,
∴CD=CE=DE,∠DCE=60°=∠ACB,
∴∠BCD=∠ACE,且AC=BC,CD=CE,
∴△BCD≌△ACE(SAS)
∴BD=AE,
(3)如圖3,取AC的中點(diǎn)O,連接OB,OF,BF,
,
F是以AC為直徑的圓上一點(diǎn),設(shè)AC中點(diǎn)為O,
∵在△BOF中,BO+OF≥BF,
當(dāng)B、O、F三點(diǎn)共線時(shí)BF最長(zhǎng);
如圖,過(guò)點(diǎn)O作OH⊥BC,
∵∠BAC=90°,AB=AC=2a,
∴,∠ACB=45°,且OH⊥BC,
∴∠COH=∠HCO=45°,
∴OH=HC,
∴,
∵點(diǎn)O是AC中點(diǎn),AC=2a,
∴,
∴,
∴BH=3a,
∴,
∵點(diǎn)C關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,
∴∠AFC=90°,
∵點(diǎn)O是AC中點(diǎn),
∴,
∴,
∴當(dāng)B、O、F三點(diǎn)共線時(shí)BF最長(zhǎng);最大值為(+)a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,是邊上一點(diǎn),連接,過(guò)作于,交于.
(1)如圖1,連接,當(dāng),時(shí),求的長(zhǎng);
(2)如圖2,對(duì)角線,交于點(diǎn).連接,若,求的長(zhǎng);
(3)如圖3,對(duì)角線,交于點(diǎn).連接,,若,試探索與的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(是常數(shù),)的圖象與軸交于點(diǎn)和點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),連接.
(1)用含的代數(shù)式表示點(diǎn)和點(diǎn)的坐標(biāo);
(2)垂直于軸的直線在點(diǎn)與點(diǎn)之間平行移動(dòng),且與拋物線和直線分別交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長(zhǎng)為.
①當(dāng)時(shí),求的值;
②若,則當(dāng)為何值時(shí),取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線.
(1)求拋物線的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);
(2)將拋物線向下平移,得拋物線,使拋物線的頂點(diǎn)落在直線上.
①求拋物線的解析式;
②拋物線與軸的交點(diǎn)為,(點(diǎn)在點(diǎn)的左側(cè)),拋物線的對(duì)稱(chēng)軸于軸的交點(diǎn)為,點(diǎn)是線段上的一點(diǎn),過(guò)點(diǎn)作直線軸,交拋物線于點(diǎn),點(diǎn)關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為,點(diǎn)是線段上一點(diǎn),且,連接,作交軸于點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過(guò)點(diǎn)A作∠DAF=∠DAB,過(guò)點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交⊙O于點(diǎn)G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長(zhǎng)度;
(3)若DE=4,AE=8,求線段EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行團(tuán)計(jì)劃今年暑假組織一個(gè)老年人團(tuán)去昆明旅游,預(yù)定賓館住宿時(shí),有住宿條件一樣的甲、乙兩家賓館供選擇,其收費(fèi)標(biāo)準(zhǔn)為每人每天120元,并且各自推出不同的優(yōu)惠方案.甲家是35人(含35人)以?xún)?nèi)的按標(biāo)準(zhǔn)收費(fèi),超過(guò)35人的,超出部分按九折收費(fèi);乙家是45人(含45人)以?xún)?nèi)的按標(biāo)準(zhǔn)收費(fèi),超過(guò)45人的,超出部分按八折收費(fèi).設(shè)老年團(tuán)的人數(shù)為.
(1)根據(jù)題意,用含有的式子填寫(xiě)下表:
甲賓館收費(fèi)/元 | 5280 | |||
乙賓館收費(fèi)/元 | 5400 |
(2)當(dāng)老年人團(tuán)的人數(shù)為何值時(shí),在甲、乙兩家賓館的花費(fèi)相同?如果老年人團(tuán)的人數(shù)超過(guò)60人,在哪家賓館住宿比較省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末步行去游泳館游泳,爸爸先出發(fā)了一段時(shí)間后小明才出發(fā),途中小明在離家米處的報(bào)亭休息了一段時(shí)間后繼續(xù)按原來(lái)的速度前往游泳館.爸爸、小明離家的距離(單位:米),單位:米)與小明所走時(shí)間(單位:分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
分別求出爸爸離家的距離和小明到達(dá)報(bào)亭前離家的距離與時(shí)間之間的函數(shù)關(guān)系式;
求小明在報(bào)亭休息了多長(zhǎng)時(shí)間遇到姍姍來(lái)遲的爸爸?
若游泳館離小明家米,請(qǐng)你通過(guò)計(jì)算說(shuō)明誰(shuí)先到達(dá)游泳館?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我們學(xué)習(xí)過(guò)的數(shù)學(xué)教科書(shū)中,有一個(gè)數(shù)學(xué)活動(dòng),其具體操作過(guò)程是:
第一步:對(duì)折矩形紙片,使與重合,得到折痕,把紙片展開(kāi)(如圖①);
第二步:再一次折疊紙片,使點(diǎn)落在上,并使折痕經(jīng)過(guò)點(diǎn),得到折痕,同時(shí)得到線段(如圖②).
如圖②所示建立平面直角坐標(biāo)系,請(qǐng)解答以下問(wèn)題:
(Ⅰ)設(shè)直線的解析式為,求的值;
(Ⅱ)若的延長(zhǎng)線與矩形的邊交于點(diǎn),設(shè)矩形的邊,;
(i)若,,求點(diǎn)的坐標(biāo);
(ii)請(qǐng)直接寫(xiě)出、應(yīng)該滿(mǎn)足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,對(duì)角線與相交于點(diǎn)點(diǎn)為的中點(diǎn),連接的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn)連接.
(1)求證:;
(2)若判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com