【題目】如圖,在O中,直徑AB垂直弦CD于E,過點(diǎn)A作∠DAF=∠DAB,過點(diǎn)D作AF的垂線,垂足為F,交AB的延長線于點(diǎn)P,連接CO并延長交O于點(diǎn)G,連接EG.

(1)求證:DF是O的切線;

(2)若AD=DP,OB=3,求的長度;

(3)若DE=4,AE=8,求線段EG的長.

【答案】(1)證明見解析(2)π(3)2

【解析】試題分析:(1)連接OD,由等腰三角形的性質(zhì)得出∠DAB=∠ADO,再由已知條件得出∠ADO=∠DAF,證出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出結(jié)論;

(2)易得∠BOD=60°,再由弧長公式求解即可;

(3)連接DG,由垂徑定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.

試題解析:(1)證明:連接OD,如圖1所示:

OA=OD,

∴∠DAB=ADO,

∵∠DAF=DAB,

∴∠ADO=DAF,

ODAF,

又∵DFAF,

DFOD,

DF是⊙O的切線;

(2)AD=DP

∴∠P=DAF=DAB =x0

∴∠P+DAF+DAB =3xo=90O

x0=300

∴∠BOD=60°,

的長度=

(3)解:連接DG,如圖2所示:

ABCD,

DE=CE=4,

CD=DE+CE=8,

設(shè)OD=OA=x,則OE=8﹣x,

RtODE中,由勾股定理得:OE2+DE2=OD2

即(8﹣x)2+42=x2,

解得:x=5,

CG=2OA=10,

CG是⊙O的直徑,

∴∠CDG=90°,

DG==6,

EG==.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cmA=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t≤15).過點(diǎn)D作DFBC于點(diǎn)F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當(dāng)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人民商場準(zhǔn)備購進(jìn)甲、乙兩種牛奶進(jìn)行銷售,若甲種牛奶的進(jìn)價(jià)比乙種牛奶的進(jìn)價(jià)每件少5元,其用90元購進(jìn)甲種牛奶的數(shù)量與用100元購進(jìn)乙種牛奶的數(shù)量相同.

1)求甲種牛奶、乙種牛奶的進(jìn)價(jià)分別是多少元?

2)若該商場購進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,該商場甲種牛奶的銷售價(jià)格為49元,乙種牛奶的銷售價(jià)格為每件55元,則購進(jìn)的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(利潤=售價(jià)﹣進(jìn)價(jià))等于371元,請通過計(jì)算求出該商場購進(jìn)甲、乙兩種牛奶各自多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F、G、H分別是BDBC、AC、AD的中點(diǎn),且ABCD.結(jié)論:①EGFH;②四邊形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四邊形EFGH的周長等于2AB.其中正確的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川廣安8分)某商場籌集資金12.8萬元,一次性購進(jìn)空調(diào)、彩電共30臺.根據(jù)市場需要,這些空調(diào)、彩電可以全部銷售,全部銷售后利潤不少于1.5萬元,其中空調(diào)、彩電的進(jìn)價(jià)和售價(jià)見表格.

空調(diào)

彩電

進(jìn)價(jià)(元/臺)

5400

3500

售價(jià)(元/臺)

6100

3900

設(shè)商場計(jì)劃購進(jìn)空調(diào)x臺,空調(diào)和彩電全部銷售后商場獲得的利潤為y元.

(1)試寫出y與x的函數(shù)關(guān)系式;

(2)商場有哪幾種進(jìn)貨方案可供選擇?

(3)選擇哪種進(jìn)貨方案,商場獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,點(diǎn)E在對角線AC上,連接BE、DE

1如圖1,作EMABAB于點(diǎn)M,當(dāng)AE=時,求BE的長;

2如圖2,作EGBECD于點(diǎn)G,求證:BE=EG;

3如圖3,作EFBCBC于點(diǎn)F,設(shè)BF=x,BEF的面積為y當(dāng)x取何值時,y取得最大值,最大值是多少?當(dāng)BEF的面積取得最大值時,在直線EF取點(diǎn)P,連接BP、PC,使得∠BPC=45°,求EP的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,AC=8cm,BC=6cm,D、E分別為邊AB、BC的中點(diǎn),連結(jié)DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD﹣DE運(yùn)動,到點(diǎn)E停止,點(diǎn)PAD上以5cm/s的速度運(yùn)動,在DE上以1cm/s的速度運(yùn)動,過點(diǎn)PPQAC于點(diǎn)Q,以PQ為邊作正方形PQMN.設(shè)點(diǎn)P的運(yùn)動時間為t(s).

(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時,線段DP的長為_____cm.(用含t的代數(shù)式表示)

(2)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

(3)如圖2,若點(diǎn)O在線段BC上,且CO=1,以點(diǎn)O為圓心,1cm長為半徑作圓,當(dāng)點(diǎn)P開始運(yùn)動時,⊙O的半徑以0.2cm/s的速度開始不斷增大,當(dāng)⊙O與正方形PQMN的邊所在直線相切時,求此時的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】·黃金周期間,武漢動物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))

日期

101

102

103

104

105

106

107

人數(shù)變化單位:萬人

+1.6

+0.8

+0.4

-0.4

-0.8

+0.2

-1.2

1)若930日的游客人數(shù)記為,請用的代數(shù)式表示102日的游客人數(shù)?

2)請判斷七天內(nèi)游客人數(shù)最多的是哪天?請說明理由。

3)若930日的游客人數(shù)為2萬人,門票每人10元。問黃金周期間武漢動物園門票收入是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上有三個點(diǎn),它們表示的數(shù)分別是.

1)填空: , .

2)若點(diǎn)以每秒個單位長度的速度向左運(yùn)動,同時,點(diǎn)和點(diǎn)分別以每秒個單位長度和個單位長度的速度向右運(yùn)動.試探索:的值是否隨著時間的變化而改變? 請說明理由。

3)現(xiàn)有動點(diǎn)都從點(diǎn)出發(fā),點(diǎn)以每秒個單位長度的速度向終點(diǎn)移動:當(dāng)點(diǎn)移動到點(diǎn)時,點(diǎn)才從點(diǎn)出發(fā),并以每秒個單位長度的速度向右移動,且當(dāng)點(diǎn)到達(dá)點(diǎn)時,點(diǎn)就停止移動.設(shè)點(diǎn)移動的時間為秒,請?jiān)囉煤?/span>的式了表示兩點(diǎn)間的距離(不必寫過程,直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案