【題目】課堂上,老師給出一道題:如圖,將拋物線Cyx26x+5x軸下方的圖象沿x軸翻折,翻折后得到的圖象與拋物線Cx軸上方的圖象記為G,已知直線lyx+m與圖象G有兩個公共點,求m的取值范圍甲同學(xué)的結(jié)果是﹣5m<﹣1,乙同學(xué)的結(jié)果是m.下列說法正確的是( 。

A.甲的結(jié)果正確

B.乙的結(jié)果正確

C.甲、乙的結(jié)果合在一起才正確

D.甲、乙的結(jié)果合在一起也不正確

【答案】D

【解析】

當(dāng)直線過拋物線與x軸右側(cè)的交點時,恰有一個交點;

直線yx+m向上移,經(jīng)過g左側(cè)交點之前均為兩個交點;

繼續(xù)向上平移,直到經(jīng)過G中間的頂點(3,4)之前均為三個交點;

最終向上平移,均有兩個交點.

解:令yx26x+50,解得(1,0),(5,0

將點(1,0),(5,0)分別代入直線yx+m,得m=﹣1,﹣5;

∴﹣5m<﹣1

由題可知,圖象G中的頂點為(34

代入直線yx+m,得m1,

m1

綜上所述,m1或﹣5m<﹣1

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山坡上有一棵樹AB,樹底部B點到山腳C點的距離BC米,山坡的坡角為30°.小寧在山腳的平地F處測量這棵樹的高,點C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

1)若求該拋物線與x軸的交點坐標(biāo);

2)若,是否存在實數(shù),使得相應(yīng)的y=1,若有,請指明有幾個并證明你的結(jié)論,若沒有,闡述理由。

3)若且拋物線在區(qū)間上的最小值是-3,求b的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(10),OC=3OB,


1)求拋物線的解析式;
2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
3)若點Ex軸上,點P在拋物線上.是否存在以ACE,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形ABCD是矩形,AB2BC4,點E是線段AD上一動點(不與A,D重合),點F是線段AB延長線上一動點,連接CE,EF,EFBC于點G,設(shè)AEx,AFy,已知yx之間的函數(shù)關(guān)系如圖②所示.

1)求圖②中yx的函數(shù)表達式;

2)求證:CECF

3)是否存在x的值,使得CEG是等腰三角形?如果存在,求出x的值;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,BD為⊙O的直徑,且BD8,是圓周的,A上任意一點,取ACAB,交BD的延長線于C,連結(jié)OA,并作AEBDE,設(shè)ABx,CDy

1)寫出y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)x為何值時,CA是⊙O的切線?

3)當(dāng)CA與⊙O相切時,求tanOAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形的邊長均為18×8方格紙中,有線段AB和線段CD.點A、BC、D均在小正方形的頂點上.

1)在方格紙中畫出以AB為斜邊的直角三角形ABE,點E在小正方形的頂點上,且△ABE的面積為5;

2)在方格紙中畫出以CD為一邊的△CDF.點F在小正方形的頂點上,△CDF的面積為4,CF與(1)中畫的線段AE所在直線垂直,連接EF,請直接寫出線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點分別為A0,1),B-1,0),C0-1),D1,0).對于圖形M,給出如下定義:P為圖形M上任意一點,Q為正方形ABCD邊上任意一點,如果P,Q兩點間的距離有最大值,那么稱這個最大值為圖形M正方距,記作

1)已知點

①直接寫出的值;

②直線x軸交于點F,當(dāng)取最小值時,求k的取值范圍;

2的圓心為 ,半徑為1.若,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點GCE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關(guān)系?請說明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

同步練習(xí)冊答案