【題目】如圖1,在平面直角坐標系中,O為坐標原點,點A的坐標為(﹣8,0),點B的坐標為(﹣8,6),直線BC∥x軸,交y軸于點C,將四邊形OABC繞點O按順時針方向旋轉(zhuǎn)α度得到四邊形OA′B′C′,此時直線OA′、直線B′C′分別與直線BC相交于點P、Q.

(1)四邊形OABC的形狀是 , 當α=90°時, 的值是
(2)①如圖2,當四邊形OA′B′C′的頂點B′落在y軸正半軸上時,求 的值;
②如圖3,當四邊形OA′B′C′的頂點B′落在BC的延長線上時,求△OPB′的面積.

(3)在四邊形OABC旋轉(zhuǎn)過程中,當0°<α≤180°時,是否存在這樣的點P和點Q,使BP= BQ?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

【答案】
(1)矩形;
(2)

解:①圖2,

∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,

∴△COP∽△A′OB′.

,即

∴CP= ,BP=BC﹣CP=

同理△B′CQ∽△B′C′O,

,

∴CQ=3,BQ=BC+CQ=11.

,

;

②圖3,在△OCP和△B′A′P中, ,

∴△OCP≌△B′A′P(AAS).

∴OP=B′P.

設B′P=x,

在Rt△OCP中,(8﹣x)2+62=x2

解得x=

∴SOPB′= × ×6=


(3)

解:存在這樣的點P和點Q,使BP= BQ.

點P的坐標是P1(﹣9﹣ ,6),P2(﹣ ,6).

理由:

過點Q作QH⊥OA′于H,連接OQ,則QH=OC′=OC,

∵SPOQ= PQOC,SPOQ= OPQH,

∴PQ=OP.

設BP=x,

∵BP= BQ,

∴BQ=2x,

如圖4,當點P在點B左側(cè)時,

OP=PQ=BQ+BP=3x,

在Rt△PCO中,(8+x)2+62=(3x)/span>2,

解得x1=1+ ,x2=1﹣ (不符實際,舍去).

∴PC=BC+BP=9+ ,

∴P(﹣9﹣ ,6).

如圖5,當點P在點B右側(cè)時,

∴OP=PQ=BQ﹣BP=x,PC=8﹣x.

在Rt△PCO中,(8﹣x)2+62=x2,解得x=

∴PC=BC﹣BP=8﹣ =

∴P(﹣ ,6),

綜上可知,存在點P(﹣9﹣ ,6)或(﹣ ,6),使BP= BQ.


【解析】解:(1)圖1,四邊形OA′B′C′的形狀是矩形;

∵點A的坐標為(﹣8,0),點B(﹣8,6),
∴AB∥OC,
∵BC∥x軸,
∴四邊形OABC是平行四邊形.
又OC⊥OA,
∴平行四邊形OABC的形狀是矩形;
當α=90°時,P與C重合,如圖1,
BP=8,BQ=BP+OC=8+6=14,

即是矩形的長與寬的比,則
所以答案是矩形, ;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設邊長為3的正方形的對角線長為a.下列關(guān)于a的四種說法:
①a是無理數(shù);
②a可以用數(shù)軸上的一個點來表示;
③3<a<4;
④a是18的算術(shù)平方根.
其中,所有正確說法的序號是( )
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達式.
(3)直接寫出y1>y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點B測得山頂點A的仰角為30°,然后向正東方向前行62米,到達D點,在測得山頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求小島高度AC(結(jié)果精確的1米,參考數(shù)值:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點.
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)若抽取的成績用扇形圖來描述,則表示“第三組(79.5~89.5)”的扇形的圓心角為
(2)若成績在90分以上(含90分)的同學可以獲獎,請估計該校約有多少名同學獲獎?
(3)某班準備從成績最好的4名同學(男、女各2名)中隨機選取2名同學去社區(qū)進行環(huán)保宣傳,則選出的同學恰好是1男1女的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,半徑為R,圓心角為n°的扇形面積是S扇形=,由弧長l=,得S扇形==R=lR.通過觀察,我們發(fā)現(xiàn)S扇形=lR類似于S三角形=×底×高.
類比扇形,我們探索扇環(huán)(如圖②,兩個同心圓圍成的圓環(huán)被扇形截得的一部分交作扇環(huán))的面積公式及其應用.

(1)設扇環(huán)的面積為S扇環(huán) , 的長為l1的長為l2 , 線段AD的長為h(即兩個同心圓半徑R與r的差).類比S梯形=×(上底+下底)×高,用含l1 , l2 , h的代數(shù)式表示S扇環(huán) , 并證明;
(2)用一段長為40m的籬笆圍成一個如圖②所示的扇環(huán)形花園,線段AD的長h為多少時,花園的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案