【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為

【答案】25:9
【解析】解:過A作AD⊥BC于D,過A′作A′D′⊥B′C′于D′,
∵△ABC與△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,
∴AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵SBAC= ADBC= ABsinB2ABcosB=25sinBcosB,
SA′B′C′= A′D′B′C′= A′B′cosB′2A′B′sinB′=9sinB′cosB′,
∴SBAC:SA′B′C′=25:9,
故答案為:25:9.
先根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,∠B′=∠C′,根據(jù)三角函數(shù)的定義得到AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,然后根據(jù)三角形面積公式即可得到結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】李明為好友制作了一個如圖所示的正方體禮品盒,在六個面上各有一字,連起來就是“祝取得好成績”,其中“!钡膶γ媸恰暗谩保俺伞钡膶γ媸恰翱儭,則它的平面展開圖可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù)y1= (x<0)圖象上一點,AO的延長線交函數(shù)y2= (x>0,k<0)的y2圖象于點B,BC⊥x軸,若SABC= ,求函數(shù)y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年中考,阜陽市某區(qū)計劃在4月中旬的某個周二至周四這3天進行理化加試.王老師和朱老師都將被邀請當監(jiān)考老師,王老師隨機選擇2天,朱老師隨機選擇1天當監(jiān)考老師.
(1)求王老師選擇周二、周三這兩天的概率是多少?
(2)求王老師和朱老師兩人同一天監(jiān)考理化加試的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個交點;
②如果當x≤﹣1時,y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個單位后過原點,則m=1;
④如果當x=2時的函數(shù)值與x=8時的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是 . (把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點的拋物線y=ax2+bx+c過點B.動點P從點D出發(fā),沿DC邊向點C運動,同時動點Q從點B出發(fā),沿BA邊向點A運動,點P、Q運動的速度均為每秒1個單位,運動的時間為t秒.過點P作PE⊥CD交BD于點E,過點E作EF⊥AD于點F,交拋物線于點G.

(1)求拋物線的解析式;
(2)當t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點P、Q運動過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點H,使以B,Q,E,H為頂點的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2+bx+c與x軸相交于點A,B(4,0),與y軸相交于點C,直線y=﹣x+3經(jīng)過點C,與x軸相交于點D.

(1)求拋物線的解析式;
(2)點P為第一象限拋物線上一點,過點P作x軸的垂線,垂足為點E,PE與線段CD相交于點G,過點G作y軸的垂線,垂足為點F,連接EF,過點G作EF的垂線,與y軸相交于點M,連接ME,MD,設(shè)△MDE的面積為S,點P的橫坐標為t,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點B作直線GM的垂線,垂足為點K,若BK=OD,求:t值及點P到拋物線對稱軸的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是假命題的是(
A.三角形的內(nèi)心到三角形三條邊的距離相等
B.三角形三條邊的垂直平分線的交點到三角形三個頂點的距離相等
C.對于實數(shù)a,b,若|a|≤|b|,則a≤b
D.對于實數(shù)x,若 =x,則x≥0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O為坐標原點,點A的坐標為(﹣8,0),點B的坐標為(﹣8,6),直線BC∥x軸,交y軸于點C,將四邊形OABC繞點O按順時針方向旋轉(zhuǎn)α度得到四邊形OA′B′C′,此時直線OA′、直線B′C′分別與直線BC相交于點P、Q.

(1)四邊形OABC的形狀是 , 當α=90°時, 的值是
(2)①如圖2,當四邊形OA′B′C′的頂點B′落在y軸正半軸上時,求 的值;
②如圖3,當四邊形OA′B′C′的頂點B′落在BC的延長線上時,求△OPB′的面積.

(3)在四邊形OABC旋轉(zhuǎn)過程中,當0°<α≤180°時,是否存在這樣的點P和點Q,使BP= BQ?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案