【題目】如圖,D、E分別是ABCAB、BC上的點,AD=2BDBE=CE,若SABC=18,設(shè)ADF的面積為S1,CEF的面積為S2,則S1-S2的值是______.

【答案】3

【解析】

根據(jù)AD=2BD,BE=CE,且SABC=12,從而求出△ABE的面積和△BCD的面積,又因為SADF-SCEF=SABE-SBCD,所以即可求解S1-S2的值.

解:∵BE=CE,
BE=BC,
SABC=18,
SABE=SABC=×18=9
AD=2BDSABC=18
SBCD=SABC=6,
SABE-SBCD=SADF+S四邊形BEFD-SCEF+S四邊形BEFD=SADF-SCEF
SADF-SCEF=SABE-SBCD=9-6=3
故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,點E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點H,AH=10,連接BD,分別交AE、AH、AF于點P、G、Q.

(1)求CEF的周長;

(2)若EBC的中點,求證:CF=2DF;

(3)連接QE,求證:AQ=EQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在平面直角坐標(biāo)系內(nèi),△ABC三個頂點的坐標(biāo)分別為A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度).

(1)作出△ABC向左平移5個單位長度,再向下平移3個單位長度得到的△A1B1C1;

(2)以坐標(biāo)原點O為位似中心,相似比為2,在第二象限內(nèi)將△ABC放大,放大后得到△A2B2C2作出△A2B2C2;

(3)以坐標(biāo)原點O為旋轉(zhuǎn)中心,將△ABC逆時針旋轉(zhuǎn)90°,得到△A3B3C3,作出△A3B3C3,并求線段AC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ y軸相交于點A,點B與點O關(guān)于點A對稱.

(1)填空:點B的坐標(biāo)為________;

(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC,BD平分∠CBAAC于點DDEAB于點E,且DEA的周長為2019cm,則AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為制作一部海洋專題片,一攝像師在一直升飛機上進行航拍,飛機在同一高度沿一條直線飛行,飛機每秒鐘飛行米.當(dāng)飛機飛到點時,攝像師發(fā)現(xiàn)自己的正下方的海面上有一美麗景色,一段時間后飛機飛到點,此時測得其俯角是,又經(jīng)過了半分鐘,飛機飛到點,此時測得此俯角是,由此你能知道飛機的大約高度嗎?(參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周助是個動漫迷,媽媽用周助喜歡的動漫設(shè)計了下面的游戲:用如圖被平均分成份的轉(zhuǎn)盤,轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤靜止后,指針指向一個動漫名.若所指的動漫名不在文化部動漫黑名單內(nèi),則周助每天可以看一集動漫;否則,周助三天才可以看一集動漫.(注:系列在文化部動漫黑名單內(nèi))

求出周助每天可以看一集動漫的概率;

周助覺得這個游戲不公平,要將游戲規(guī)則改為:轉(zhuǎn)動兩次轉(zhuǎn)盤,若兩次指針均指向黑名單動漫,則自己每天可以看一集動漫,否則,三天看一集動漫.請你用列表法或畫樹狀圖法求出周助每天都可以看一集動漫的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠A90°,ABAC,∠ABC的角平分線交ACD,BD4,過點CCEBDBD的延長線于E,則CE的長為(  )

A.B.2C.3D.2

查看答案和解析>>

同步練習(xí)冊答案