【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°已知樓房高AB約是45m , 根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CDm

【答案】135
【解析】∵爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,
∴∠ADB=30°,
RtABD中,
tan30°= ,
解得,
AD=45 ,
∵在一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,
∴在RtACD中,
CD=ADtan60°=45 × =135米
故答案為135米
根據(jù)“爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°”可以求出AD的長,然后根據(jù)“在一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°”可以求出CD的長

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一名男生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=﹣ x2+ x+ ,鉛球運行路線如圖.
(1)求鉛球推出的水平距離;
(2)通過計算說明鉛球行進高度能否達到4m?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形EFGH是由正方形ABCD經(jīng)過位似變換得到的,點O是位似中心,E , F , GH分別是OA , OB , OC , OD的中點,則正方形EFGH與正方形ABCD的面積比是(  )
A.1:6
B.1:5
C.1:4
D.1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課外興趣小組的同學們要測量被池塘相隔的兩棵樹A.B的距離,他們設計了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到E , 再從E沿著垂直于AE的方向走到F , CAE上一點,其中3位同學分別測得三組數(shù)據(jù):①AC , ∠ACB;②EF.DE.AD;③CD , ∠ACB , ∠ADB.其中能根據(jù)所測數(shù)據(jù)求得A.B兩樹距離的有( 。

A.0組
B.一組
C.二組
D.三組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖南路大橋于今年5月1日竣工,為徒駭河景區(qū)增添了一道亮麗的風景線某校數(shù)學興趣小組用測量儀器測量該大橋的橋塔高度,在距橋塔AB底部50米的C處,測得橋塔頂部A的仰角為41.5°(如圖)已知測量儀器CD的高度為1米,則橋塔AB的高度約為(  )(參考數(shù)據(jù):sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)

A.34米
B.38米
C.45米
D.50米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點D , E , F , G , 已知∠CGD=42°

(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B , 交AC邊于點H , 如圖②所示,點HB在直尺上的度數(shù)分別為4,13.4,求BC的長(結(jié)果保留兩位小數(shù)).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D、E分別是邊AB,BC的中點.若△DBE的周長是6,則△ABC的周長是( 。
A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請按要求完成下面三道小題.

(1)如圖1,AB=AC.這兩條線段一定關于某條直線對稱嗎?如果是,請說明是哪條直線,并在圖1中畫出這條直線;如果不是,請說明理由.

(2)如圖2,已知線段AB和點C.

求作線段CD,使它與AB成軸對稱,且A與C是對稱點,請畫出圖形,并簡述畫圖過程.

(3)如圖3,任意位置的兩條線段AB,CD,AB=CD.你能通過對其中一條線段作有限次的軸對稱使它們重合嗎?如果能,請畫出圖形,并描述操作過程;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案