【題目】知識(shí)鋪墊
通過小學(xué)的學(xué)習(xí)我們知道:
①正方形的四條邊都相等,四個(gè)角都是直角如在正方形中,,
.
②等腰三角形中相等的兩條邊所對(duì)的兩個(gè)角也相等。如在中,如果,那么.
解決問題
如圖1,在中,為銳角,點(diǎn)為射線上一點(diǎn),連接,以為一邊且在的右側(cè)作正方形,解答下列問題:
(1)如果,
①如圖2,當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),線段、之間的數(shù)量關(guān)系為__________,位置關(guān)系為__________.
②如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),①中的結(jié)論是否仍然成立,并說明理由.
拓展延伸
(2)如果,.點(diǎn)在線段上,當(dāng)__________時(shí),(點(diǎn)、不重合).
【答案】(1)①相等,垂直;②成立,理由見解析;(2)45°.
【解析】
(1)①證明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,則∠BCF=∠ACB+∠ACF=90°,所以BD與CF相等且垂直;
②①的結(jié)論仍成立,同理證明△DAB≌△FAC,可得結(jié)論:垂直且相等;
(2)當(dāng)∠ACB滿足45°時(shí),CF⊥BC;如圖4,作輔助線,證明△QAD≌△CAF,即可得出結(jié)論.
解:(1)①CF與BD數(shù)量關(guān)系是相等,位置關(guān)系是垂直,理由是:
如圖2,∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∴∠DAC+∠CAF=90°,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=90°,且∠B=∠ACB=45°,
∴∠CAF=∠BAD,
∴△BAD≌△CAF,
∴BD=CF,∠B=∠ACF=45°,
∴∠ACB+∠ACF=45°+45°=90°,
即∠BCF=90°,
∴BC⊥CF,
即BD⊥CF;
故答案為:相等,垂直;
②當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí),①的結(jié)論仍成立,理由是:
如圖3,由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD,
∠ACF=∠ABD,
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=∠ABC=45°
∴∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD;
(2)當(dāng)∠ACB=45°時(shí),CF⊥BD,理由是:
如圖4,過點(diǎn)A作AQ⊥AC,交BC于點(diǎn)Q,
∵∠BCA=45°,
∴∠AQC=45°,
∴∠AQC=∠BCA,
∴AC=AQ,
∵AD=AF,∠QAC=∠DAF=90°,
∴∠QAC-∠DAC=∠DAF-∠DAC,
∴∠QAD=∠CAF,
∴△QAD≌△CAF,
∴∠ACF=∠AQD=45°,
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
故答案為:45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再選兩個(gè)做為補(bǔ)充,使ABCD變?yōu)檎叫危旅嫠姆N組合,錯(cuò)誤的是( 。
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了探索代數(shù)式的最小值,
小張巧妙的運(yùn)用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則,則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得的最小值等于 ,此時(shí)x= ;
(2)題中“小張巧妙的運(yùn)用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想;
(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)
(3)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們區(qū)測(cè)量一座古塔CD的高度,他們首先在A處安置測(cè)量器,測(cè)得塔頂C的仰角∠CFE=30°,然后往塔的方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔頂C的仰角∠CGE=60°,已知測(cè)量器高1.5米,請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD 的高度,(≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點(diǎn)E,∠BED的角平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積.
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1.
(3)寫出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:如圖1,在中,若,.求邊上的中線的取值范圍.小聰同學(xué)是這樣思考的:延長(zhǎng)至,使,連結(jié).利用全等將邊轉(zhuǎn)化到,在中利用三角形三邊關(guān)系即可求出中線的取值范圍.在這個(gè)過程中小聰同學(xué)證三角形全等用到的判定方法是__________;中線的取值范圍是__________.
(2)問題解決:如圖2,在中,點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊上,若.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
B. 明天下雪的概率為,表示明天有半天都在下雪
C. 甲、乙兩人在相同條件下各射擊10次,他們成績(jī)的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績(jī)較穩(wěn)定
D. 了解一批充電寶的使用壽命,適合用普查的方式
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com