如圖所示,AB是⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D,求證:AC平分∠DAB.
證明:如右圖所示,連接OC,
∵CD是⊙O的切線,
∴OC⊥CD;
又AD⊥CD,
∴OCAD,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠3,
∴∠2=∠3,即AC平分∠DAB.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,AB是⊙O的直徑,射線BM⊥AB,垂足為B,點C為射線BM上的一個動點(C與B不重合),連接AC交⊙O于D,過點D作⊙O的切線交BC于E.
(1)在C點運動過程中,當DEAB時(如圖2),求∠ACB的度數(shù);
(2)在C點運動過程中,試比較線段CE與BE的大小,并說明理由;
(3)∠ACB在什么范圍內(nèi)變化時,線段DC上存在點G,滿足條件BC2=4DG•DC(請寫出推理過程).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦DC交AB于E,過C作⊙O的切線交DB的延長線于M,若AB=4,∠ADC=45°,∠M=75°,則CD的長為( 。
A.
3
B.2C.3
3
D.2
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知,如圖,AB是⊙O的直徑,DC切⊙O于點C,AB=2BC,則∠BCD=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點為F,F(xiàn)HBC,連接AF交BC于E,∠ABC的平分線BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以點C為圓心,R為半徑的圓與邊AB(邊AB為線段)僅有一個公共點,則R的值為(  )
A.R>3B.R=
12
5
C.R=
12
5
或3<R≤4
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,EC是⊙O的直徑,且EC=2,作BC⊥AC于C,使BC=2,過B作⊙O的切線BA交CE的延長線于A,切點為D.
①求證:AD•AB=AO•AC;
②求AE及AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點O在Rt△ABC的斜邊AB上,⊙O切AC邊于點E,切BC邊于點D,連接OE,如果由線段CD、CE及劣弧ED圍成的圖形(陰影部分)面積與△AOE的面積相等,那么
BC
AC
的值約為(π取3.14)( 。
A.2.7B.2.5C.2.3D.2.1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16.∠BAC的平分線AD交BC于D,經(jīng)過A、D兩點的⊙O交AB于E,且點O在AB上.
(1)求證:BC是⊙O的切線;
(2)求AF的長.

查看答案和解析>>

同步練習冊答案