已知,如圖,AB是⊙O的直徑,DC切⊙O于點(diǎn)C,AB=2BC,則∠BCD=______度.
連接OC,
∵AB是直徑,
∴∠ACB=90°,
∵AB=2BC,
∴∠A=30°,
∵OA=OC,
∴∠ACO=∠A=30°;
∴∠BCO=60°,
∵DC切⊙O于點(diǎn)C,
∴∠OCD=90°,
∴∠BCD=30°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,過點(diǎn)B作⊙O的切線,交于CA的延長線于點(diǎn)E,∠EBC=2∠C.
(1)求證:AB=AC;
(2)當(dāng)
AB
BC
=
5
4
時(shí),①求tan∠ABE的值;②如果AE=
20
11
,求AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線.
(2)若AD=2
6
,AE=6
2
,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在矩形ABCD中,點(diǎn)O在對(duì)角線BD上,以O(shè)D為半徑的⊙O與AD、BD分別交于點(diǎn)E、F,且∠ABE=∠DBC.
(1)求證:BE與⊙O相切;
(2)若sin∠ABE=
1
3
,CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,D在AC上,以AD為直徑的⊙O恰與邊BC切于E,且AE平分∠BAC,試判斷
△ABC的形狀,并加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O′經(jīng)過⊙O的圓心,E、F是兩圓的交點(diǎn),直線OO′交⊙O′于點(diǎn)P,交EF于點(diǎn)C,交⊙O于點(diǎn)Q,且EF=2
15
,sin∠P=
1
4

(1)求證:PE是⊙O的切線;
(2)求⊙O和⊙O′的半徑的長;
(3)若點(diǎn)A在劣弧
QF
上運(yùn)動(dòng)(與點(diǎn)Q、F不重合),連接PA交劣弧
DF
于點(diǎn)B,連接BC并延長交⊙O于點(diǎn)G,設(shè)CG=x,PA=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的切線互相垂直,垂足為D,求證:AC平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O和不在⊙O上的一點(diǎn)P,過P直線交⊙O于A、B點(diǎn),若PA•PB=4,OP=5,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半圓O的直徑,點(diǎn)C是⊙O上一點(diǎn)(不與A,B重合),連接AC,BC,過點(diǎn)O作ODAC交BC于點(diǎn)D,在OD的延長線上取一點(diǎn)E,連接EB,使∠OEB=∠ABC.
(1)求證:BE是⊙O的切線;
(2)若OA=10,BC=16,求BE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案