【題目】如圖,E、F是正方形ABCD的對(duì)角線AC上的兩點(diǎn),AC=8,AE=CF=1,則四邊形BEDF的周長(zhǎng)是_____.
【答案】20
【解析】
連接BD交AC于點(diǎn)O,則可證得OE=OF,OD=OB,可證四邊形BEDF為平行四邊形,且BD⊥EF,可證得四邊形BEDF為菱形;根據(jù)勾股定理計(jì)算DE的長(zhǎng),可得結(jié)論.
解:如圖,連接BD交AC于點(diǎn)O,
∵四邊形ABCD為正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=2,
∴OA﹣AE=OC﹣CF,即OE=OF,
∴四邊形BEDF為平行四邊形,且BD⊥EF,
∴四邊形BEDF為菱形,
∴DE=DF=BE=BF,
∵AC=BD=8,OE=OF=,
由勾股定理得:DE=,
∴四邊形BEDF的周長(zhǎng)=4DE=4×5=20,
故答案為:20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)服裝廠加工同種型號(hào)的防護(hù)服,甲廠每天加工的數(shù)量是乙廠每天加工數(shù)量的1.5倍,兩廠各加工600套防護(hù)服,甲廠比乙廠要少用4天.
(1)求甲、乙兩廠每天各加工多少套防護(hù)服?
(2)已知甲、乙兩廠加工這種防護(hù)服每天的費(fèi)用分別是150元和120元,疫情期間,某醫(yī)院緊急需要3000套這種防護(hù)服,甲廠單獨(dú)加工一段時(shí)間后另有安排,剩下任務(wù)只能由乙單獨(dú)完成.如果總加工費(fèi)不超過(guò)6360元,那么甲廠至少要加工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,△DCE是△ABC繞著點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)得到的,此時(shí)B、C、E在同一直線上.
(1)旋轉(zhuǎn)角的大小;
(2)若AB=10,AC=8,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長(zhǎng)線上,∠CAD=45°.
(1)若AB=4,求弧CD的長(zhǎng).
(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2.
(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長(zhǎng)度,則點(diǎn)B所對(duì)應(yīng)的數(shù)是_____.
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng).現(xiàn)兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動(dòng),經(jīng)過(guò)多長(zhǎng)時(shí)間A、B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為6×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)均為格點(diǎn),在圖中已標(biāo)出線段AB,A,B均為格點(diǎn),按要求完成下列問(wèn)題.
(1)以AB為對(duì)角線畫(huà)一個(gè)面積最小的菱形AEBF,且E,F為格點(diǎn);
(2)在(1)中該菱形的邊長(zhǎng)是 ,面積是 ;
(3)以AB為對(duì)角線畫(huà)一個(gè)菱形AEBF,且E,F為格點(diǎn),則可畫(huà) 個(gè)菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出)
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
(初步思考)
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
(深入探究)
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能分揀設(shè)備在快遞業(yè)務(wù)中的普及,快件分揀效率大幅提高.使用某品牌智能分揀設(shè)備,每人每小時(shí)分揀的快件量是傳統(tǒng)分揀方式的25倍,經(jīng)過(guò)測(cè)試,由5人用此設(shè)備分揀8000件快件的時(shí)間,比20人用傳統(tǒng)方式分揀同樣數(shù)量的快件節(jié)省4小時(shí).某快遞中轉(zhuǎn)站平均每天需要分揀10萬(wàn)件快件,如果使用此智能分揀設(shè)備,每天只需要安排多少名工人就可以完成分揀工作(每天工作時(shí)間為8小時(shí)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com