【題目】(1)如圖,僅用直尺和圓規(guī)畫一個(gè)長(zhǎng)方形,使它的面積是圖中長(zhǎng)方形面積的4倍.
(2)若新的長(zhǎng)方形的長(zhǎng)與寬的比為4:3,且周長(zhǎng)為56厘米,求新長(zhǎng)方形的面積.
【答案】(1)見解析;(2)192cm2.
【解析】
(1)要使新長(zhǎng)方形是原長(zhǎng)方形面積的4倍,可以把長(zhǎng)寬都擴(kuò)大2倍,延長(zhǎng)長(zhǎng)方形的長(zhǎng)和寬,然后分別以原長(zhǎng)方形的頂點(diǎn)作圓,與延長(zhǎng)線的交點(diǎn)為新長(zhǎng)方形的頂點(diǎn),然后作出新長(zhǎng)方形即可;
(2)設(shè)新長(zhǎng)方形的長(zhǎng)為4x,寬為3x,列出方程解出x即可求出長(zhǎng)方形的面積.
解:(1)要使新長(zhǎng)方形是原長(zhǎng)方形面積的4倍,可以把長(zhǎng)寬都擴(kuò)大2倍,如下圖所示,延長(zhǎng)長(zhǎng)方形的長(zhǎng)和寬,然后分別以原長(zhǎng)方形的頂點(diǎn)作圓,與延長(zhǎng)線的交點(diǎn)為新長(zhǎng)方形的頂點(diǎn),然后作出新長(zhǎng)方形;
(2)設(shè)新長(zhǎng)方形的長(zhǎng)為4x,寬為3x,則2×(3x+4x)=56,解得:x=4,則長(zhǎng)為:4×4=16cm,寬為3×4=12cm,則新長(zhǎng)方形的面積為:16×12=192cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試同時(shí)聽寫100個(gè)漢字,每正確聽寫出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)?/span>(分),且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:
組別 | 成績(jī)(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
(1)本次決賽共有 名學(xué)生參加;
(2)直接寫出表中a= ,b= ;
(3)請(qǐng)補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;
(4)若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體是由若干個(gè)棱長(zhǎng)為3cm的小正方體搭成的,從左面、上面看到的幾何體的形狀圖如圖所示:
(1)該幾何體最少由 個(gè)小立方體組成,最多由 個(gè)小立方體組成.
(2)將該幾何體的形狀固定好,
①求該幾何體體積的最大值;
②若要給體積最小時(shí)的幾何體表面涂上油漆,求所涂油漆面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)商進(jìn)行商鋪促銷,廣告上寫著如下條款:投資者購(gòu)買商鋪后,必須由開發(fā)商代租賃5年,5年期滿后由開發(fā)商以比原商鋪標(biāo)價(jià)高20%的價(jià)格進(jìn)行回購(gòu),投資者可在以下兩種購(gòu)鋪方案中做出選擇:
方案一:按照商鋪標(biāo)價(jià)一次性付清鋪款,每年可獲得的租金為商鋪標(biāo)價(jià)的10%;
方案二:按商鋪標(biāo)價(jià)的八折一次性付清鋪款,前3年商鋪的租金收益歸開發(fā)商所有,3年后每年可獲得的租金為商鋪標(biāo)價(jià)的9%
(1)問投資者選擇哪種購(gòu)鋪方案,5年后所獲得的投資收益率更高?為什么?
(注:投資收益率=×100%)
(2)對(duì)同一標(biāo)價(jià)的商鋪,甲選擇了購(gòu)鋪方案一,乙選擇了購(gòu)鋪方案二,那么5年后兩人獲得的收益相差7.2萬元.問甲乙兩人各投資了多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | ||||||
出現(xiàn)的次數(shù) |
(1)計(jì)算“點(diǎn)朝上”的頻率和“點(diǎn)朝上”的頻率.
(2)小穎說:“根據(jù)實(shí)驗(yàn)得出,出現(xiàn)點(diǎn)朝上的機(jī)會(huì)最大”;小紅說:“如投擲次,那么出現(xiàn) 點(diǎn)朝上的次數(shù)正好是次.”小穎和小紅的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= ,PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別表示使用一種白熾燈和一種節(jié)能燈的費(fèi)用(費(fèi)用燈的售價(jià)電費(fèi),單位:元)與照明時(shí)間(小時(shí))的函數(shù)圖象,假設(shè)兩種燈的使用壽命都是小時(shí),照明效果一樣.
(1)根據(jù)圖象分別求出,的函數(shù)表達(dá)式;
(2)小亮認(rèn)為節(jié)能燈一定比白熾燈省錢,你是如何想的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】州教育局為了解我州八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了某縣部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)檢測(cè)了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖(如圖)
請(qǐng)根據(jù)圖中提供的信息,回答下列問題:
(1)a= %,并寫出該扇形所對(duì)圓心角的度數(shù)為 ,請(qǐng)補(bǔ)全條形圖.
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該縣共有八年級(jí)學(xué)生2000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com