【題目】已知關(guān)于x函數(shù)y=(2﹣k)x2﹣2x+k
(1)若此函數(shù)的圖象與坐標軸只有2個交點,求k的值.
(2)求證:關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0必有一個根是1.
【答案】(1)2或0或1;(2)證明見解析.
【解析】
(1)分情況討論:(i)k﹣2=0時,求出k.(ⅱ)k﹣2≠0時,得到一個二次函數(shù),①拋物線與x軸只有一個交點,△=4(k﹣1)2,求出k;②拋物線與x軸有兩個交點,其中一個交點是(0,0),把(0,0)代入函數(shù)解析式,求出k.
(2)設(shè)關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0的兩個實數(shù)根分別為x1,x2,根據(jù)公式求出方程的解即可得到答案.
(1)解:分情況討論:
(i)k﹣2=0時,得k=2.
此時y=﹣2x+2與坐標軸有兩個交點,符合題意;
(ⅱ)k﹣2≠0時,得到一個二次函數(shù),
①拋物線與x軸只有一個交點,△=b2﹣4ac=(﹣2)2﹣4k(2﹣k)=4(k﹣1)2,
解得k=1;
②拋物線與x軸有兩個交點,其中一個交點是(0,0),
把(0,0)代入函數(shù)解析式,易得k=0;
故答案為:2或0或1.
(2)證明:設(shè)關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0的兩個實數(shù)根分別為x1,x2,
∴,
∴
∴關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0必有一個根是1.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ACB中,∠C=90°,AC=3 cm,BC=4 cm,以BC為直徑作☉O交AB于點D.
(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問當點E在什么位置時,直線ED與☉O相切?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我校本部教師樓AD上有“育才中學”四個字的展示牌DE,某數(shù)學興趣小組的同學準備利用所學的三角函數(shù)知識估測該教師樓的高度,由于場地有限,不便測量,所以小明沿坡度i=:1的階梯從看臺前的B處前行50米到達C處,測得展示牌底部D的仰角為45°,展示牌頂部E的仰角為53°(小明的身高忽略不計),已知展示牌高DE=15米,則該教師樓AD的高度約為( 。┟祝▍⒖紨(shù)據(jù):Sin37°≈0,6,cos 37°≈0,8,tan37°≈0.75,≈1.7)
A. 102.5B. 87.5C. 85D. 70
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE中,DC和AB的延長線交于F,則圖中與△DBF相似的三角形有(不再添加其他的線段和字母,不包括△DBF本身) ( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與軸交于A、B兩點,點P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點P的個數(shù)為( ).
A. 2個 B. 3個 C. 4個 D. 6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知,.
求拋物線的解析式;
在拋物線的對稱軸上是否存在點P,使是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,的面積最大?求出的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統(tǒng)計圖.根據(jù)圖中所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應推薦______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com