【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,已知,點(diǎn)A在x軸上,點(diǎn)C在y軸上,P是對(duì)角線OB上一動(dòng)點(diǎn)(不與原點(diǎn)重合),連接PC,過點(diǎn)P作,交x軸于點(diǎn)D.下列結(jié)論:①;②當(dāng)點(diǎn)D運(yùn)動(dòng)到OA的中點(diǎn)處時(shí),;③在運(yùn)動(dòng)過程中,是一個(gè)定值;④當(dāng)△ODP為等腰三角形時(shí),點(diǎn)D的坐標(biāo)為.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
①根據(jù)矩形的性質(zhì)即可得到;故①正確;
②由點(diǎn)D為OA的中點(diǎn),得到,根據(jù)勾股定理即可得到,故②正確;
③如圖,過點(diǎn)P作于F,FP的延長(zhǎng)線交BC于E,,則,根據(jù)三角函數(shù)的定義得到,求得,根據(jù)相似三角形的性質(zhì)得到,根據(jù)三角函數(shù)的定義得到,故③正確;
④當(dāng)為等腰三角形時(shí),Ⅰ、,解直角三角形得到,
Ⅱ、OP=OD,根據(jù)等腰三角形的性質(zhì)和四邊形的內(nèi)角和得到,故不合題意舍去;
Ⅲ、,根據(jù)等腰三角形的性質(zhì)和四邊形的內(nèi)角和得到,故不合題意舍去;于是得到當(dāng)為等腰三角形時(shí),點(diǎn)D的坐標(biāo)為.故④正確.
解:①∵四邊形OABC是矩形,,
;故①正確;
②∵點(diǎn)D為OA的中點(diǎn),
,
,故②正確;
③如圖,過點(diǎn)P作 A于F,FP的延長(zhǎng)線交BC于E,
,四邊形OFEC是矩形,
,
設(shè),則,
在中,,
,
,
,
,
,
,
,
,
,
,
,
,
,故③正確;
④,四邊形OABC是矩形,
,
,
,
當(dāng)為等腰三角形時(shí),
Ⅰ、
Ⅱ、
,
,故不合題意舍去;
Ⅲ、,
,
故不合題意舍去,
∴當(dāng)為等腰三角形時(shí),點(diǎn)D的坐標(biāo)為.故④正確,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為 °;
(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)若∠BAC=50°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)試判斷線段EF、BF與AC三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.
(1)分別寫出A、B、C的坐標(biāo);
(2)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于y軸對(duì)稱,并寫出B1的坐標(biāo);
(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC關(guān)于原點(diǎn)對(duì)稱,并寫出A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,OE⊥BD交BC于點(diǎn)E,CD=1,則CE的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:
①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1 cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始沿BC向點(diǎn)C以2cm/s的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x秒(x>0).
(1)求幾秒后,PQ的長(zhǎng)度等于5 cm.
(2)運(yùn)動(dòng)過程中,△PQB的面積能否等于8 cm2?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),以為腰作等腰直角,使,連接.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)在線段上時(shí),
①與的位置關(guān)系為__________;
②之間的數(shù)量關(guān)系為___________(提示:可證)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),(1)中的①、②結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線時(shí),將沿線段翻折,使點(diǎn)與點(diǎn)重合,連接,若,請(qǐng)直接寫出線段的長(zhǎng).(提示:做于,做于)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com