【題目】如圖,在菱形ABCD中, ,點(diǎn)E是邊BC上的動點(diǎn)不與點(diǎn)重合,以AE為邊作,使得,射線AF交邊CD于點(diǎn)F

如圖1,當(dāng)點(diǎn)E是邊CB的中點(diǎn)時,判斷并證明線段之間的數(shù)量關(guān)系;

如圖2,當(dāng)點(diǎn)E不是邊BC的中點(diǎn)時,求證:

【答案】,理由見解析;(2)證明見解析.

【解析】試題分析:1AE=AF,易證△ABC是等邊三角形,即可得,求得 然后利用平行線與三角形外角的性質(zhì),可求得證得 即可得 證得是等邊三角形即可;
2)由(1)可知是等邊三角形, 再結(jié)合已知條件可證明△ABE≌△ACF(ASA),由全等三角形的性質(zhì)即可得到BE=CF.

試題解析:(1)AE=AF,理由如下:

連接AC.如圖所示:

∵四邊形ABCD是菱形,

AB=BC,

∴△ABC是等邊三角形,

ADBC,

∴∠AEB=AFC.

在△ABE和△ACF中,

∴△ABE≌△ACF(AAS).

AE=AF.

(2)證明:由(1)得:∠B=60°,是等邊三角形,

在△ABE和△ACF中,

∴△ABE≌△ACF(ASA).

BE=CF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點(diǎn)C,交AD于點(diǎn)E,CG⊥AD于點(diǎn)G,連接FE,F(xiàn)C.
(1)求證:GC是⊙F的切線;
(2)填空: ①若∠BAD=45°,AB=2 ,則△CDG的面積為
②當(dāng)∠GCD的度數(shù)為時,四邊形EFCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,A(1,a)、B(b,1),其中ab滿足+(ab-7)2=0.

(1) a、b的值

(2) 平移線段ABCD,其中AB的對應(yīng)點(diǎn)分別為C、D,若D的坐標(biāo)為(0,n)且n<0,若四邊形ABDC的面積為20,求D的坐標(biāo)

(3)在(2)的條件下,將線段AB繞點(diǎn)A以每秒80的速度順時針旋轉(zhuǎn),同時線段CD繞點(diǎn)D以每秒20的速度順時針旋轉(zhuǎn)(當(dāng)AB旋轉(zhuǎn)到一周時兩線段同時停止旋轉(zhuǎn)),設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,直線AB與直線CD的夾角為600?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進(jìn)行一次測驗(yàn),兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計(jì)圖表:

甲、乙射擊成績統(tǒng)計(jì)表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

1

(1)請補(bǔ)全上述圖表(請直接在表中填空和補(bǔ)全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認(rèn)為誰將勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×5網(wǎng)格圖中,其中每個小正方形邊長均為1,梯形ABCD和五邊形EFGHK的頂點(diǎn)均為小正方形的頂點(diǎn).

(1)以B為位似中心,在網(wǎng)格圖中作四邊形A′BC′D′,使四邊形A′BC′D′和梯形ABCD位似,且位似比為2:1;
(2)求(1)中四邊形A′BC′D′與五邊形EFGHK重疊部分的周長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=7,AC=A=45°,AHHC,垂足為H。

1)求證:AHC是等腰直角三角形;

2)求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC=5,BC=6,點(diǎn)D是BC上的一點(diǎn),那么點(diǎn)D到AB與AC的距離的和為(  )
A.5
B.6
C.4
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)如圖,直線AB和直線CD、直線BE和直線CF都被直線BC所截.在下面三個式子中,請你選擇其中兩個作為條件,剩下的一個作為結(jié)論,組成一個真命題并證明.

①AB⊥BC、CD⊥BC②BE∥CF,③∠1=∠2

條件(已知):

結(jié)論(求證):

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程: ; ③x2-y2=4;④5(x+y)=7(x+y);⑤2x2=3; .其中是二元一次方程的是______填序號)

查看答案和解析>>

同步練習(xí)冊答案