【題目】如圖,拋物線與x軸交于A(﹣2,0)、B(6,0)兩點.
(1)求該拋物線的解析式;
(2)點P為y軸左側拋物線上一個動點,若S△PAB=32,求此時P點的坐標.
【答案】(1);(2)或
【解析】
(1)將A、B兩點的坐標代入即可求出拋物線的解析式;
(2)過點P作PE⊥x軸,然后利用S△PAB求出PE的長即可得到P點縱坐標有兩種情況,分別求出橫坐標,再根據點P為y軸左側拋物線上即可排除.
解:(1)將A、B兩點的坐標代入得:
解得:
∴該拋物線的解析式為:.
(2)過點P作PE⊥x軸,
∵A(﹣2,0)、B(6,0)
∴AB=6-(﹣2)=8
∵S△PAB=32,
∴S△PAB==32
解得:PE=8
∴P點縱坐標為±8
當P點縱坐標為﹣8時,代入到解析式中,得:
解得:(不符合點P在y軸左側,舍去)
此時P點坐標為:;
當P點縱坐標為8時,代入到解析式中,得:
解得:(不符合點P在y軸左側,舍去)
此時P點坐標為:
綜上所述:P點坐標為:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C是AB延長線上的一點,點D在⊙O上且AD=CD,∠C=30°.
(1)求證:CD是⊙O的切線,
(2)若⊙O的半徑為5,求 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據以往經驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,點A、B的坐標分別為(9,0)、(6,﹣9),△AB'O'是△ABO關于點A的位似圖形,且O'的坐標為(﹣3,0),則點B'的坐標為( )
A.(8,﹣12)B.(﹣8,12)
C.(8,﹣12)或(﹣8,12)D.(5,﹣12)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx﹣4經過點A(﹣8,0),對稱軸是直線x=﹣3,點B是拋物線與y軸交點,點M、N同時從原點O出發(fā),以每秒1個單位長度的速度分別沿x軸的負半軸、y的負半軸方向勻速運動,(當點N到達點B時,點M、N同時停止運動).過點M作x軸的垂線,交直線AB于點C,連接CN、MN,并作△CMN關于直線MC的對稱圖形,得到△CMD.設點N運動的時間為t秒,△CMD與△AOB重疊部分的面積為S.
(1)求拋物線的函數(shù)表達式;
(2)當0<t<2時,
①求S與t的函數(shù)關系式.
②直接寫出當t=_____時,四邊形CDMN為正方形.
(3)當點D落在邊AB上時,過點C作直線EF交拋物線于點E,交x軸于點F,連接EB,當S△CBE:S△ACF=1:3時,直接寫出點E的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛從A站開往D站的動車,途中經停B、C兩站,互不相識的甲、乙、丙三人同時從A站上車。
(1)求甲、乙兩人在同一車站下車的概率;
(2)甲、乙、丙三人在同一車站下車的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學玩摸球游戲,游戲規(guī)則如下:
先由甲同學從中隨機摸出一球,記下球號,并放回攪勻,再由乙同學從中隨機摸出一球,記下球號。將甲同學摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.
問:這個游戲公平嗎?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com