【題目】如圖,在等邊三角形ABC右側(cè)作射線CP,∠ACP=(0°<<60°),點(diǎn)A關(guān)于射線CP的對(duì)稱點(diǎn)為點(diǎn)D,BD交CP于點(diǎn)E,連接AD,AE.
(1)求∠DBC的大。ㄓ煤的代數(shù)式表示);
(2)在(0°<<60°)的變化過程中,∠AEB的大小是否發(fā)生變化?如果發(fā)生變化,請(qǐng)直接寫出變化的范圍;如果不發(fā)生變化,請(qǐng)直接寫出∠AEB的大小;
(3)用等式表示線段AE,BD,CE之間的數(shù)量關(guān)系,并證明.
【答案】(1)∠DBC;(2)∠AEB的大小不會(huì)發(fā)生變化,且∠AEB=60°;(3)BD=2AE+CE,證明見解析.
【解析】
(1)如圖1,連接CD,由軸對(duì)稱的性質(zhì)可得AC=DC,∠DCP=∠ACP=,由△ABC是等邊三角形可得AC=BC,∠ACB=60°,進(jìn)一步即得∠BCD=,BC=DC,然后利用三角形的內(nèi)角和定理即可求出結(jié)果;
(2)設(shè)AC、BD相交于點(diǎn)H,如圖2,由軸對(duì)稱的性質(zhì)可證明△ACE≌△DCE,可得∠CAE=∠CDE,進(jìn)而得∠DBC=∠CAE,然后根據(jù)三角形的內(nèi)角和可得∠AEB=∠BCA,即可作出判斷;
(3)如圖3,在BD上取一點(diǎn)M,使得CM=CE,先利用三角形的外角性質(zhì)得出∠BEC,進(jìn)而得△CME是等邊三角形,可得∠MCE=60°,ME=CE,然后利用角的和差關(guān)系可得∠BCM=∠DCE,再根據(jù)SAS證明△BCM≌△DCE,于是BM=DE,進(jìn)一步即可得出線段AE,BD,CE之間的數(shù)量關(guān)系.
解:(1)如圖1,連接CD,∵點(diǎn)A關(guān)于射線CP的對(duì)稱點(diǎn)為點(diǎn)D,∴AC=DC,∠DCP=∠ACP=,
∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,
∴∠BCD=,BC=DC,
∴∠DBC=∠BDC;
(2)∠AEB的大小不會(huì)發(fā)生變化,且∠AEB=60°.
理由:設(shè)AC、BD相交于點(diǎn)H,如圖2,∵點(diǎn)A關(guān)于射線CP的對(duì)稱點(diǎn)為點(diǎn)D,
∴AC=DC,AE=DE,又∵CE=CE,∴△ACE≌△DCE(SSS),∴∠CAE=∠CDE,
∵∠DBC=∠BDC,∴∠DBC=∠CAE,又∵∠BHC=∠AHE,∴∠AEB=∠BCA=60°,
即∠AEB的大小不會(huì)發(fā)生變化,且∠AEB=60°;
(3)AE,BD,CE之間的數(shù)量關(guān)系是:BD=2AE+CE.
證明:如圖3,在BD上取一點(diǎn)M,使得CM=CE,
∵∠BEC=∠BDC+∠DCE=,
∴△CME是等邊三角形,∴∠MCE=60°,ME=CE,
∴,
∴∠BCM=∠DCE,又∵BC=DC,CM=CE,
∴△BCM≌△DCE(SAS),∴BM=DE,
∵AE=DE,
∴BD=BM+ME+DE=2DE+ME=2AE+CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O是斜邊AB的中點(diǎn),將邊長(zhǎng)足夠大的三角板的直角頂點(diǎn)放在點(diǎn)O處,將三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0°<α<90°),記三角板的兩直角邊與Rt△ABC的兩腰AC、BC的交點(diǎn)分別為E、D,四邊形CEOD是旋轉(zhuǎn)過程中三角板與△ABC的重疊部分(如圖①所示).那么,在上述旋轉(zhuǎn)過程中:
(1)線段CE與BD具有怎樣的數(shù)量關(guān)系?四邊形CEOD的面積是否發(fā)生變化?證明你發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)三角尺旋轉(zhuǎn)角度為____________時(shí),四邊形CEOD是矩形;
(3)若三角尺繼續(xù)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角度α(90°<α<180°)時(shí),三角尺的兩邊與等腰Rt△ABC的腰CB和AC的延長(zhǎng)線分別交于點(diǎn)D、E(如圖②所示). 那么線段CE與BD的數(shù)量關(guān)系還成立嗎?若成立,給予證明;若不成立,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分別畫出滿足下列條件的點(diǎn):(尺規(guī)作圖,請(qǐng)保留作圖痕跡,不寫作法.作圖痕跡請(qǐng)加粗加黑!)
(1)在邊上找一點(diǎn),使到和的距離相等;
(2)在射線上找一點(diǎn),使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-4x+7與y=x交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求拋物線頂點(diǎn)C的坐標(biāo),并求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中①;②;③;④,是一元二次方程的有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)和點(diǎn),且.
如圖,若點(diǎn)恰好是拋物線的頂點(diǎn),請(qǐng)寫出它的對(duì)稱軸和的值.
若,求、的值,并指出此時(shí)拋物線的開口方向.
若拋物線的開口向下,請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日,慶祝中華人民共和國(guó)成立周年大會(huì)在京隆重舉行.當(dāng)天在天安門廣場(chǎng)舉行了盛大閱兵式和群眾游行,閱兵式的全體受閱官兵由人民解放軍、武警部隊(duì)和民兵預(yù)備役部隊(duì)約名官兵、臺(tái)(套)裝備組成的個(gè)徒步方隊(duì)、個(gè)裝備方隊(duì);陸海、空航空兵余架戰(zhàn)機(jī)組成的個(gè)空中梯隊(duì)和個(gè)空中護(hù)旗隊(duì)根據(jù)上述數(shù)據(jù)繪制了以下尚不完整的統(tǒng)計(jì)圖表:
根據(jù)圖表提供的信息,解答以下問題:
(1)統(tǒng)計(jì)表中的 ; .
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在閱兵過程中,已知直播介紹空中護(hù)旗隊(duì)為秒,介紹每個(gè)徒步方隊(duì)裝備方隊(duì)、空中梯隊(duì)經(jīng)過的時(shí)間分別為秒、秒、秒,請(qǐng)你求出每個(gè)方(護(hù)旗梯)隊(duì)的平均播出時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,連接BD。
(1)求證:DE是⊙O的切線;
(2)若tan∠ABD=2,CE=1,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-(m+3)x+9的頂點(diǎn)C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點(diǎn),與x、y軸分別交于D、E兩點(diǎn).
(1)求m的值;
(2)求A、B兩點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com