【題目】已知a、b、c是三角形的三邊長,如果滿足(a﹣6)2+ +|c﹣10|=0,則三角形的形狀是 .
【答案】直角三角形
【解析】解:∵(a﹣6)2≥0, ≥0,|c﹣10|≥0, 又∵(a﹣b)2+ =0,
∴a﹣6=0,b﹣8=0,c﹣10=0,
解得:a=6,b=8,c=10,
∵62+82=36+64=100=102 ,
∴是直角三角形.
所以答案是:直角三角形.
【考點精析】關(guān)于本題考查的絕對值和勾股定理的逆定理,需要了解正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分別是∠AOC,∠BOD的平分線,∠MON等于________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一組數(shù)椐:3,4,5,6,6,則下列四個結(jié)論中正確的是( )
A.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是4.8,6,6
B.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是5,5,5
C.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是4.8,6,5
D.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是5,6,6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】十九大報告中提出“廣泛開展全民健身活動,加快推進體育強國建設(shè)”.為了響應(yīng)號召,提升學生訓(xùn)練興趣,某中學自編“功夫扇”課間操.若設(shè)最外側(cè)兩根大扇骨形成的角為∠COD,當“功夫扇”完全展開時∠COD=160°.在扇子舞動過程中,扇釘O始終在水平線AB上.
小華是個愛思考的孩子,不但將以上實際問題抽象為數(shù)學問題,而且還在抽象出的圖中畫出了∠BOC 的平分線OE,以便繼續(xù)探究.
(1)當扇子完全展開且一側(cè)扇骨OD呈水平狀態(tài)時,如圖1所示.請在抽象出的圖2中畫出∠BOC 的平分線OE,此時∠DOE的度數(shù)為 ;
(2)“功夫扇”課間操有一個動作是把扇子由圖1旋轉(zhuǎn)到圖3所示位置,即將圖2中的∠COD繞點O旋轉(zhuǎn)至圖4所示位置,其他條件不變,小華嘗試用如下兩種方案探究了∠AOC和∠DOE度數(shù)之間的關(guān)系.
方案一:設(shè)∠BOE的度數(shù)為x.
可得出,則.
,則.
進而可得∠AOC和∠DOE度數(shù)之間的關(guān)系.
方案二:如圖5,過點O作∠AOC的平分線OF.
易得,即.
由,可得.
進而可得∠AOC和∠DOE度數(shù)之間的關(guān)系.
參考小華的思路可得∠AOC和∠DOE度數(shù)之間的關(guān)系為 ;
(3)繼續(xù)將扇子旋轉(zhuǎn)至圖6所示位置,即將∠COD繞點O旋轉(zhuǎn)至如圖7所示的位置,其他條件不變,請問(2)中結(jié)論是否依然成立?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3 . 若正方形EFGH的邊長為2,則S1+S2+S3= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線、相交于點, .
()的余角是__________(填寫所有符合要求的角).
()若,求的度數(shù).
(3)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD內(nèi)兩點M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判定兩個直角三角形全等的是( )
A. 兩個銳角對應(yīng)相等 B. 一條直角邊和一個銳角對應(yīng)相等
C. 兩條直角邊對應(yīng)相等 D. 一條直角邊和一條斜邊對應(yīng)相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com