【題目】如圖是甲、乙兩車在某時(shí)段速度隨時(shí)間變化的圖象,下列結(jié)論錯(cuò)誤的是( 。
A.乙前4秒行駛的路程為48米
B.在0到8秒內(nèi)甲的速度每秒增加4米/秒
C.兩車到第3秒時(shí)行駛的路程相等
D.在4至8秒內(nèi)甲的速度都大于乙的速度
【答案】C
【解析】解:A、根據(jù)圖象可得,乙前4秒行駛的路程為12×4=48米,正確;
B、根據(jù)圖象得:在0到8秒內(nèi)甲的速度每秒增加4米秒/,正確;
C、根據(jù)圖象可得兩車到第3秒時(shí)行駛的路程不相等,故本選項(xiàng)錯(cuò)誤;
D、在4至8秒內(nèi)甲的速度都大于乙的速度,正確;
故選C.
根據(jù)函數(shù)圖象和速度、時(shí)間、路程之間的關(guān)系,分別對每一項(xiàng)進(jìn)行分析即可得出答案.此題考查了函數(shù)的圖形,通過此類題目的練習(xí),可以培養(yǎng)學(xué)生分析問題和運(yùn)用所學(xué)知識解決實(shí)際問題的能力,能使學(xué)生體會(huì)到函數(shù)知識的實(shí)用性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲箱內(nèi)有4顆球,顏色分別為紅、黃、綠、藍(lán);乙箱內(nèi)有3顆球,顏色分別為紅、黃、黑.小賴打算同時(shí)從甲、乙兩個(gè)箱子中各抽出一顆球,若同一箱中每球被抽出的機(jī)會(huì)相等,則小賴抽出的兩顆球顏色相同的機(jī)率為何?( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,下表是該水庫4月1日~4月4日的水位變化情況:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.0 | 20.5 | 21.0 | 21.5 |
(1)請建立該水庫水位y(米)與日期x之間的函數(shù)模型,求出函數(shù)表達(dá)式;
(2)請用求出的函數(shù)表達(dá)式預(yù)測該水庫今年4月6日的水位;
(3)你能用求出的函數(shù)表達(dá)式預(yù)測該水庫今年12月1日的水位嗎?請簡要說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)C的南偏東30°方向上,已知點(diǎn)C在點(diǎn)B的北偏西60°方向上,且B、C兩地相距120海里.
(1)求出此時(shí)點(diǎn)A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè)ィ?dāng)?shù)竭_(dá)點(diǎn)A′時(shí),測得點(diǎn)B在A′的南偏東75°的方向上,求此時(shí)“中國海監(jiān)50”的航行距離.(注:結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
(3)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處,且△ABC滿足什么條件時(shí),四邊形AECF是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖①.當(dāng)∠COD在∠AOB的內(nèi)部時(shí)
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖②,當(dāng)∠COD在∠AOB的外部時(shí),
①請直接寫出∠AOC與∠DOE的度數(shù)之間的關(guān)系;
②在∠AOC內(nèi)部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出∠AOF與∠DOE的度數(shù)之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖①.當(dāng)∠COD在∠AOB的內(nèi)部時(shí)
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖②,當(dāng)∠COD在∠AOB的外部時(shí),
①請直接寫出∠AOC與∠DOE的度數(shù)之間的關(guān)系;
②在∠AOC內(nèi)部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出∠AOF與∠DOE的度數(shù)之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為.
(1)若是“相伴數(shù)對”,求的值;
(2)寫出一個(gè)“相伴數(shù)對” ,其中且;
(3)若是“相伴數(shù)對”,求代數(shù)式的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com