【題目】在矩形ABCD中,如圖,AB=10,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F.
(1)求證:BP=BF;(2)當(dāng)BP=8時,求BE·EF的值.
【答案】(1)見解析;(2) BE·EF=80.
【解析】
(1)利用折疊的性質(zhì),得出∠PGC=∠PBC=90°,∠BPC=∠GPC,進而判斷出∠GPF=∠PFB即可得出結(jié)論;
(2)判斷出△GEF∽△EAB,即可得出結(jié)論.
(1)在矩形ABCD中,∠ABC=90°,
∵△BPC沿P折疊得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,
∵BE⊥CG,
∴BE∥GP,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF;
(2)連接GF,
∵∠GEF=∠BAE=90°,
∵BF∥PG,BF=PG,
∴四邊形BPGF是平行四邊形,
∵BP=BF,
∴平行四邊形BPGF是菱形,
∴BP∥GF,
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴,
∴BE·EF=AB·GF=10×8=80.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=,BC=1,將矩形ABCD繞點A旋轉(zhuǎn)得到矩形AB′C′D′,點C的運動路徑為弧CC′,當(dāng)點B′落在CD上時,則圖中陰影部分的面積為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機抽取九年級部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,學(xué)校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題:
九年級接受調(diào)查的同學(xué)共有多少名,并補全條形統(tǒng)計圖;
九年級共有500名學(xué)生,請你估計該校九年級聽音樂減壓的學(xué)生有多少名;
若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生,心理老師想從5名同學(xué)中任選兩名同學(xué)進行交流,請用畫樹狀圖或列表的方法求同時選出的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=110°,△ADE的頂點D在BC上,且∠DAE=90°,AD=AE,則∠BAD-∠EDC的度數(shù)為( )
A.17.5°B.12.5°C.12°D.10°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為多少m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,
FD⊥BC,則△DEF的面積與△ABC的面積之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①點E、F分別在正方形ABCD的邊BC、CD上,連結(jié)AE、AF、EF,將△ABE、△ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形.若BE=2,DF=3,求AB的長;
拓展:如圖②點E、F分別在四邊形BACD的邊BC、CD上,且∠B=∠D=90°.連結(jié)AE、AF、EF將△ABE、△ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與△AEF完全重合的三角形.若∠EAF=30°,AB=4,則△ECF的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com