【題目】如圖,在平面角坐標系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.

(1)求拋物線C1的表達式;

(2)直接用含t的代數(shù)式表示線段MN的長;

(3)當AMN是以MN為直角邊的等腰直角三角形時,求t的值;

(4)在(3)的條件下,設拋物線C1y軸交于點P,點My軸右側的拋物線C2上,連接AMy軸于點k,連接KN,在平面內有一點Q,連接KQQN,當KQ=1且∠KNQ=BNP時,請直接寫出點Q的坐標.

【答案】(1)拋物線C1:解析式為y=x2+x﹣1;(2)MN=t2+2;(3)t的值為10;(4)滿足條件的Q點坐標為:(0,2)、(﹣1,3)、(,)、(,

【解析】1)利用待定系數(shù)法進行求解即可;

(2)把x=t代入函數(shù)關系式相減即可得

(3)根據(jù)圖形分別討論∠ANM=90°、AMN=90°時的情況即可得;

(4)根據(jù)題意畫出滿足條件圖形,可以找到ANKNP對稱軸,由對稱性找到第一個滿足條件Q,再通過延長和圓的對稱性找到剩余三個點,利用勾股定理進行計算.

1)∵拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),

,解得:

∴拋物線C1:解析式為y=x2+x﹣1;

(2)∵動直線x=t與拋物線C1交于點N,與拋物線C2交于點M,

∴點N的縱坐標為t2+t﹣1,點M的縱坐標為2t2+t+1,

MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;

(3)共分兩種情況

①當∠ANM=90°,AN=MN時,由已知N(t,t2+t﹣1),A(﹣2,1),

AN=t﹣(﹣2)=t+2,

MN=t2+2,

t2+2=t+2,

t1=0(舍去),t2=1,

t=1;

②當∠AMN=90°,AN=MN時,由已知M(t,2t2+t+1),A(﹣2,1),

AM=t﹣(﹣2)=t+2,

MN=t2+2,

t2+2=t+2,

t1=0,t2=1(舍去)

t=0,

t的值為10;

(4)由(3)可知t=1M位于y軸右側,根據(jù)題意畫出示意圖如圖:

易得K(0,3),B、O、N三點共線

A(﹣2,1),N(1,1),P(0,﹣1),

∴點K、P關于直線AN對稱,

設⊙Ky軸下方交點為Q2,則其坐標為(0,2),

Q2與點O關于直線AN對稱,

Q2是滿足條件∠KNQ=BNP,

NQ2延長線與⊙K交點Q1,Q1、Q2關于KN的對稱點Q3、Q4也滿足∠KNQ=BNP,

由圖形易得Q1(﹣1,3),

設點Q3坐標為(a,b),由對稱性可知Q3N=NQ1=BN=2,

由∵⊙K半徑為1,

解得,,

同理,設點Q4坐標為(a,b),由對稱性可知Q4N=NQ2=NO=

,解得,

∴滿足條件的Q點坐標為:(0,2)、(﹣1,3)、(,)、(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程有兩個實數(shù)根.

為正整數(shù),求此方程的根.

設此方程的兩個實數(shù)根為,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E是AB上的一點,將△BCE沿CE折疊至△FCE,若CF,CE恰好與以正方形ABCD的中心為圓心的⊙O相切,則折痕CE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( )

A.①②④ B.③④ C.①③④ D.①②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB1,以線段BC、CD上兩點PQ和方形的點A為頂點作正方形的內接等邊APQ,求APQ的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)市場香蕉的價格如下表

購買香蕉數(shù)(千克)

不超過20千克

20千克以上但不超過40千克

40千克以上

每千克的價格

6元

5元

4元

張強兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請問張強第一次,第二次分別購買香蕉多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以/分的速度到達圖書館.小軍始終以同一速度騎行,兩人騎行的路程為(米)與時間(分鐘)的關系如圖.請結合圖象,解答下列問題:

1)填空:____________;______

2)求線段所在直線的解析式.

3)若小軍的速度是120/分,求小軍第二次與爸爸相遇時距圖書館的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣+bx+cx軸于點A﹣2,0)和點B,交y軸于點C0,3),點Dx軸上一動點,連接CD,將線段CD繞點D旋轉得到DE,過點E作直線lx軸,垂足為H,過點CCFlF,連接DF

1)求拋物線解析式;

2)若線段DECD繞點D順時針旋轉90°得到,求線段DF的長;

3)若線段DECD繞點D旋轉90°得到,且點E恰好在拋物線上,請求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并完成任務. 三角形的外心定義:三角形三邊的垂直平分線相交于一點,這個點叫做三角形的外心,如圖1,直線分別是邊的垂直平分線.

求證:直線相交于一點.

證明:如圖2,設相交于點,分別連接

的垂直平分線,

,(依據(jù)1

的垂直平分線,

,(依據(jù)2

的垂直平分線,

∴點上,(依據(jù)3

∴直線相交于一點.

1)上述證明過程中的依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?

2)如圖3,直線分別是的垂直平分線,直線相交于點,點 的外心,于點,于點,分別連接、、、、. ,的周長為,求的周長.

查看答案和解析>>

同步練習冊答案